付着面形状が異なる UFC パネル RC 床版の耐荷力性能および破壊メカニズム

田中敏嗣(太平洋セメント(株))・阿部 忠(日大生産工・教授) 木田哲量(日大生産工・教授)・澤野利章(日大生産工・教授)

1. はじめに

近年, 鋼橋梁はコスト縮減, 工期短縮, さらには 低環境負荷を目的として,構造および施工の合理化 ・省力化が図られている.たとえば、鋼橋梁におい ては少数主げた構造の採用が増加している. これに ともなって床版支間は長大化することから、従来の 床版形式に代わる耐久性の高い床版が要求され、各 研究機関および企業では、新床版の研究・開発が進 められている.一方筆者らは、超高強度繊維補強コ ンクリート(UFC)材の有効的な活用方法を目的と して、RC 床版の引張鉄筋かぶり内に UFC 埋設型枠 (以下, UFC パネルとする)を合成した UFC パネ ル RC 床版の合成構造を提案した ^{1,2}. この UFC パ ネル RC 床版の合成構造としての実用性を評価する ためには、UFCパネル RC 床版の耐荷力性能の確保、 UFC パネルと RC 床版との合成面の付着強度の確保 および疲労性能の確保が重要となる.

そこで本研究は, RC 床版供試体と UFC パネルの 合成面を凹型および凸型(以下, 凹型を P タイプ, 凸型を C タイプとする)とした 2 タイプの合成面を 有する UFC パネル RC 床版供試体を用いて静荷重実 験および走行荷重実験を行い, UFC パネルと RC と の合成面のせん断強度, 耐荷力性能を評価するとと もに,破壊メカニズムを検証し, UFC パネル RC 床 版の実用性を考察した.

2. 供試体材料および寸法

2.1 供試体材料および材料特性値

(1) RC 床版の使用材料および示方配合 供試体のコ ンクリートには,普通ポルトランドセメントと 5mm 以下の砕砂および 5mm ~ 20mm の砕石を使用した. また.鉄筋は SD295A, D10 を使用した. コンクリ ートおよび鉄筋の材料特性値を表-1に示す.

(2) UFC パネルの使用材料および配合 UFC パネルの使用材料は,水,ポリカルボン酸系の高性能減水剤,プレミックス材料(密度 2.85g/cm³)および鋼繊維である.鋼繊維は,直径 0.2mm,長さ 15mm(密度 7.85g/cm³)を体積比 2.0%を使用した.プレミックス材料は,セメント,シリカフューム,硅石粉末などが最密充填されるように配合されており,粗骨材は用いず最大粒径 2mm の硅砂が混合されている. 混和剤使用量は,目標フロー値を 240mm として決定した.材料特性値を表-2 に示す.

(3) UFC パネルの付着面および寸法 UFC には直径 0.2mm, 長さ 15mm の鋼繊維を体積比で 2.0%配合さ れていることから、鋼繊維の架橋効果により引張力 に抵抗する材料である.そこで、UFC パネルとRC床 版の底面コンクリートとの合成効果を高めるために は、UFC パネルの合成面の構造が重要となる. ここ で, UFC パネルの合成面形状を図-1に示す. 既存 の UFC パネルの合成面形状には、凹部を一様に設 けた P タイプが採用されている ". 図-1(1)に示す ように、P タイプの凹部は直径 9mm, 合成面厚は 5mm であり、凹部の面積率は40%であり、この40% にコンクリートが挿入されて一体性が保持される構 造である.しかし、合成面に曲げ引張力が作用した 場合に凹部に挿入されているコンクリートは一面せ ん断力を受けてせん断破壊し、合成面ははく離とな る. そこで、新たに合成面の付着力の向上を目的と して、合成面に凸部を一様に設けた C タイプを提案 した. C タイプの合成面形状は、図-1(2)に示すよ うに、凸部は直径 15mm、付着面厚は 5mm とし、 凹部の面積率は60%とした.

表-1 コンクリートおよび鉄筋の材料特性値

	コンクリート	鉄筋(SD295A, D10)			
供試体	圧縮強度	降伏強度	引張強度	ヤング係数	
	(N/mm^2)	(N/mm^2)	(N/mm^2)	(kN/mm^2)	
RC13	35	368	568	200	
U.RC11-P	32	357	507	200	
U.RC13-P	35	385	520	200	
U.RC13-C	27	385	520	200	
$\times RC$: RC	末版, U.RC11:	床版厚11cm	のUFCパネノ	VRC床版	

U.RC13:床版厚13cmのUFCパネルRC床版, P:Pタイプ,C:Cタイプ

表-2 UFCの材料特性値

供試体	圧縮強度	曲げ強度	ヤング係数	
	(N/mm^2)	(N/mm^2)	(kN/mm ²)	
 U.RC11-P	200.4	32.7	55.0	
 U.RC13-P	219.4	34.9	55.0	
U.RC13-C	213.2	32.0	55.0	

図-3 UFC パネル RC 床版供試体の施工手順

2.2 RC 床版および UFC パネル RC 床版供試体寸法 (1) RC 床版供試体 本研究は,道路橋 RC 床版の施 工の合理化を目的としたことから,供試体は道路橋 示方書・同解説"(以下,道示とする)に基づいて,RC 床版の設計支間と大型車両の1日1方向あたりの計 画交通量 2000 台以上として床版厚を決定し,1/2 モ デルとした.供試体寸法を図-2(1)に示す.なお, 本実験における鉄筋ひずみの計測位置は,図-2(1) に示す床版中央の引張側主鉄筋とする.また,UFC パネルおよびたわみの計測も床版中央とする.

RC 床版供試体の寸法は,全長 1470mm,支間 1200mm,厚さ 130mm の正方形版とした.鉄筋は複 鉄筋配置とし,主鉄筋および配力筋を 100mm 間隔 とし,圧縮側は引張側の 1/2 を配置する.有効高さ は主鉄筋が 105mm,配力筋は 95mm とした. (2) UFC パネル RC 床版供試体 UFC パネル RC 床版 の床版支間および鉄筋配置は RC 床版と同様である. UFC パネルの合成面を P タイプとした供試体は, RC 床版と同様に床版全厚を 130mm とした供試体と軽 量化を目的として床版全厚を 110mm とした供試体 の2種類作製する. P タイプの床版厚 130mm の供 試体は,引張鉄筋かぶり 20mm の所に UFC パネル を配置する. また, P タイプの床版厚 110mm の供 試体は,引張鉄筋かぶり内 20mm の所に UFC パネ ルを配置することから, RC 床版部は 90mm である. これは,道示に規定する大型車両の1日1方向あた りの計画交通量 500 台未満とした場合の床版厚と同 等である. ここで,UFC パネルの合成面を P タイプ とした床版厚 130mm の供試体記号を U.RC13-P, 床 版厚 110mm の供試体記号を U.RC11-P とする.

次に、UFC パネルの合成面を C タイプとした供 試体は、RC 床版と同様に床版全厚を 130mm とし、 引張鉄筋かぶり 20mm の所に UFC パネルを配置す る.ここで、UFC パネルの合成面を C タイプとし た床版供試体の記号を U.RC13-C とする.

UFC パネル RC 床版供試体の製作は,図-3 に示 す手順で行う.この場合,既に製作してある P タイ プ,C タイプのパネルを図-3,1)に示すように, 型枠底部に配置し,パネルの上面に直接鉄筋を配置 し(図-3,2)),コンクリートを打設して一体構造 とした(図-3,3)).

3. UFC パネルの力学特性

3.1 UFC パネルの合成面のせん断強度^{1), 5)}

合成面を P タイプとした UFC パネル RC 床版の 破壊状況は, RC 床版部が押抜きせん断破壊すると 同時に UFC パネルと RC 床版との合成面は曲げ引張 力を受け, UFC パネルの凹部に挿入されているコン クリートとの合成面は一面せん断破壊し, UFC パネ ルははく離している^{1,0}. そこで, 圧縮強度が 25N/mm²

と圧縮強度の関係

表-3 最大耐荷力および破壊モード

供試体

······································						
供試体	最大耐荷力	平均耐荷力	耐荷力比	破壊モード		
	$(P_{max})(kN)$	$(P_{co})(KN)$	U.RC/RC			
RC13-S1	235.2	7277		押抜きせん断耐破壊		
RC13-S1	240.2	231.1		押抜きせん断耐破壊		
U.RC11-PS1	245.0	245.0	1.03	押抜きせん断耐破壊		
U.RC11-PS2	245.0	245.0	1.03	押抜きせん断耐破壊		
U.RC13-PS1	299.6	204.7	1.26	押抜きせん断耐破壊		
U.RC13-PS2	289.7	294.1	1.22	押抜きせん断耐破壊		
U.RC13-CS1	310.0	307.5	1.27	押抜きせん断耐破壊		
U.RC13-CS2 3	305.0		1.24	押抜きせん断耐破壊		

(1) 静荷重実験

(2) 走行荷重実験 平均耐荷力

 $(P_{cb})(kN)$

耐荷力比

U.RC/RC

破壊モード

最大耐荷力

 $(P_{max})(kN)$

~ 60N/mm² の範囲のコンクリートを UFC パネルの 凹部に挿入させた供試体を作製し、

合成面で一面せ ん断試験を行った. そのコンクリートのせん断強度 f. と圧縮強度 f. の関係は図-4 となる. なお、図 - 4 には小幡ら "による P タイプの合成面に関する 二面せん断試験の結果も示した. これによると、モ ードⅡ型による一面せん断試験の結果とほぼ近似し ている. また, 図-4より, 合成面を P タイプとし た場合のせん断強度 fev.P 式は式(1), C タイプの場 合のせん断強度 fm C 式は式(2)で得られる、なお、 提案式には UFC パネルの合成面のばらつきによる 損失量を10%考慮したが.

Pタイプ: $f_{cv0,P} = 0.248 f_c^{0.610}, f_c \leq 80 N/mm^2$ (1)C タイプ: $f_{cv0,c} = 0.372 f_c^{0.610}, f_c \leq 80 \text{N/mm}^2$ (2)ここで、f_e: RC 床版部のコンクリート圧縮強度 (N/mm^2)

3.2 UFC の引張強度

UFC の標準配合粉体と 2Vol.%の鋼繊維(繊維径 0.2mm, 繊維長 15mm)を用いて標準熱養生を行った 場合の UFC の引張強度は、UFC の曲げ強度を用い た土木学会「超高強度繊維補強コンクリートの設計 ・施工指針」。『に規定される引張軟化曲線の逆解析 モデルから算出するとしている. これより UFC の 引張強度はfu は式(3)として与えられる.

 $f_{u,u} = (f_b - 1.54)/2.59$ (3)ここで, fa: UFC パネルの曲げ強度(N/mm²)

4. 実験方法^{9),10)}

(1) 静荷重実験方法(S) 静荷重実験は,最大曲げ応 力が生じる床版中央に車輪を停止して荷重を載荷さ せる実験である. 載荷方法は荷重制御により 5.0kN ずつ増加する.供試体記号をSとする.

(2) 走行荷重実験方法(R) 走行荷重実験は,最も耐 力低下の著しい支間中央から両支点方向へ1往復走 行させて,元の支間中央で停止させる実験である.

走行速度は1往復 2.4m を 13sec で走行する 0.18m/s とした. 荷重は、1 走行ごとに 5.0kN ずつ増加する 段階荷重とした.供試体記号を R とする.なお,走 行範囲を図-2に併記した.

5. 実験結果および考察

5.1 実験耐荷力

RC13-R1 押抜きせん断耐破壊 170.0 170.2 RC13-R1 170.4 押抜きせん断耐破壊 1.09 URC11-PR1 185.0 押抜きせん断耐破壊 187.9 U.RC11-PR2 190.7 押抜きせん断耐破壊 1.12U.RC13-PR1 235.4 1.38 押抜きせん断耐破壊 238.0 U.RC13-PR2 240.5 1.41 押抜きせん断耐破壊 U.RC13-CR1 240.0 甲抜きせん断耐破壊 1.28 232.5 U.RC13-CR2 1.20 押抜きせん断耐破壊 225.0 静荷重実験および走行荷重実験における最大耐荷 力および破壊モードを表-3に示す.なお、本実験

における走行荷重実験の最大耐荷力は、一往復走行

を維持した最大荷重とする. (1) RC 床版 本実験における RC 床版供試体の最大 耐荷力の平均は、静荷重実験の場合は 237.7kN, 走 行荷重実験の場合が 170.2kN である.静荷重実験と 走行荷重実験の最大耐荷力を比較すると走行荷重実 験の供試体が 28%耐荷力が低下した. これは, 走行 荷重実験の場合は、輪荷重が軸方向の支間内を走行 することにより、床版下面にひび割れが発生し、荷 重増加と走行を繰り返すことにより貫通ひび割れと なるためである. 床版は貫通ひび割れによりはり状 化することから等方性を失い、耐荷力が低下したも のである.

(2) UFC パネル RC 床版 軽量化を目的として床版厚 を 110mm とした P タイプの UFC パネル RC 床版供 試体の最大耐荷力の平均は,静荷重実験の場合が 245kN, 走行荷重実験の場合が 187.9kN である. 静 荷重実験と走行荷重実験の耐荷力比は 0.77 となり、 走行荷重が作用することで 23%耐荷力が低下した が, RC 床版の低下率に比して 5%縮小されている. また, RC 床版供試体と比較すると静荷重実験では 1.03 倍, 走行荷重実験では 1.09 倍向上した. したが って, 床版厚 110mm の UFC パネル RC 床版は, 床 版厚 130mm の RC 床版と同等以上の耐荷力を有し ていることから、同一支間長を有する RC 床版に対 して軽量化が図られる.

次に, RC 床版と同一寸法で床版厚 130mm の P タ イプの UFC パネル RC 床版供試体の最大耐荷力の平 均は,静荷重実験の場合は 294.7kN, 走行荷重実験 の場合は 238.0kN であり, 静荷重実験と走行荷重実 験の最大耐荷力を比較すると走行荷重実験の耐荷力 が 19%低下している、また、RC 床版と同一寸法の 床版厚 130mm で合成面を C タイプとした UFC パネ ル RC 床版供試体の最大耐荷力の平均値は,静荷重 実験の場合は 307.5kN, 走行荷重実験の場合は 232.5kN であり、静荷重実験と走行荷重実験の耐荷 力比は 0.76 となり走行荷重が作用することで 24%低 下した.

RC 床版と床版厚 130mm の P タイプおよび C タ イプの UFC パネル RC 床版の最大耐荷力を比較する と,静荷重実験の場合には,P タイプが 1.24 倍,C タイプが 1.26 倍となり,両タイプともに耐荷力が大 幅に向上した.また,走行荷重実験の場合には,P タイプが 1.40 倍,C タイプは 1.24 倍となり,UFC パネルに配合された鋼繊維の架橋効果により,耐荷 力が大幅に向上した.

次に, 床版厚 130mm の合成面を P タイプとした UFC パネル供試体と C タイプとした UFC パネル供 試体の平均耐荷力を比較すると、静荷重実験の場合 は C タイプ, 走行荷重実験の場合は P タイプが上回 る. しかし、コンクリートの圧縮強度は P タイプが 35N/mm², Cタイプが 27N/mm² であり, Cタイプの 圧縮強度が 8.0N/mm² 低いにも関わらず同程度の耐 荷力性能を有している. これは、UFC パネルに挿入 されるコンクリートの面積率が 40%である P タイプ のせん断強度(feer)は 2.2N/mm², コンクリートの面 積率が 60%である C タイプのせん断強度(f.m.c)は 2.8N/mm² であり、C タイプが 1.3 倍であるために合 成面の付着効果が向上したためである.したがって、 道路橋 RC 床版においては P タイプ, C タイプとも に RC 床版の耐荷力を上まわり実用性が評価される ものの, 合成面を凸型とした C タイプの場合は合成 効果が高いことから, P タイプ以上に実用性が評価 された.

5.2 荷重とたわみの関係

静荷重実験および走行荷重実験におけるスパン中 央の荷重とたわみの関係を図-5示す.

(1) 静荷重実験 RC 床版の静荷重実験における荷重 とたわみの関係は図- 5(1)より,供試体 RC13-S の 場合は荷重 60kN 付近までたわみは線形的に増加し ている. その後の荷重増加においても荷重 200kN 付 近まで線形的に増加し,その後の荷重増加でたわみ の増加が著しくなり,破壊時のたわみは,供試体 RC13-S1 が荷重 235.2kN で 12.6mm,供試体 RC-S-2 が荷重 240.2kN で 15.2mm である.

次に, UFC パネル RC 床版供試体の荷重とたわみ の関係は,供試体 U.RC11-PS は 200kN 付近までた わみは線形的に増加するが,その後の荷重増加から たわみの増加が著しくなっている.破壊時のたわみ は,供試体 U.RC11-PS1 が荷重 245.0kN で 4.9mm, 供試体 U.RC11-PS2 が荷重 245.0kN で 5.9mm であ る.次に,供試体 U.RC13-PS は荷重 260kN 付近ま でたわみは線形的に増加し,その後の荷重増加から たわみの増加が著しくなる.破壊時のたわみは,供 試体 U.RC13-PS1 が荷重 299.6kN で 5.6mm,供試体 U.RC13-PS2 が荷重 289.7kN で 6.4mm である.また, C タイプの供試体もほぼ同様な増加傾向を示してい

る. 破壊時のたわみは,供試体 U.RC13-CS1 が荷重 310.0kN で 5.6mm,供試体 U.RC13-CS2 が荷重 305.0kN で 5.9mm である.

以上より, P タイプおよび C タイプともに RC 床 版供試体の 50%程度となり, 大幅にたわみが抑制されている.

(2) 走行荷重実験 RC 床版供試体 RC13-R の走行荷 重実験における荷重とたわみの関係は図- 5(2)よ り、荷重 50kN 付近までたわみは線形的に増加して いる. その後の荷重の増加にともない荷重 160kN 付 近まではたわみは緩やかに増加し、その後の荷重増 加でたわみの増加が著しくなっている. 走行荷重実 験による破壊時の最大たわみは、供試体 RC13-R1 が 荷重 170.0kN で 11.5mm、供試体 RC13-R2 が荷重 170.4 で 11.6mm である.

次に, UFC パネル RC 床版供試体の荷重とたわみ の関係は,供試体 U.RC11-PR は荷重 160kN 付近まで たわみは線形的に増加するが、その後の荷重増加か らたわみがわずかに増加している.破壊時のたわみ は,供試体 U.RC11-PR1 が荷重 185.0kN で 4.6mm, 供試体 U.RC11-PR2 が荷重 190.0kN で 4.0mm である. また、床版厚 130mm の供試体は P タイプの供試体 U.RC13-PR, C タイプの供試体 U.RC13-CR ともに荷 重 200kN 付近までたわみは線形的に増加し, その後 の荷重増加によりたわみがわずかに増加している. 供試体 U.RC13-PR のたわみの増加が供試体 U.RC13-CR に比してやや大きいことから、荷重 205.0kN 付近から合成面でのはく離が始まっているも のと考えられる.破壊時のたわみは、供試体 U.RC13-PR1 が荷重 235.4kN で 7.0mm, 供試体 U.RC13-PR2 が荷重 240.5kN で 5.7mm である。また, 供試体 U.RC13-CR1 が荷重 240.0kN で 5.3mm, 供試 体 U.RC13-PC2 が荷重 225.0kN で 4.7mm である.

以上より, P タイプと C タイプを比較すると, C タイプの場合の最大たわみはやや抑制されている.

5.3 破壊状況

本実験における RC 床版および UFC パネル RC 床版の静荷重実験および走行荷重実験の場合の破壊後

の床版底面のひび割れ状況を図-6に示す.

5.3.1 静荷重実験による破壊状況

(1) RC 床版 静荷重実験における RC 床版下面のひ び割れ状況は、図-6(1)、1)に示すように、供試体 RC13-S1 は、車輪の接地面(250mm×40mm)からひ び割れは床版底面方向に 45 度の拡がりで分布し、 底面のコンクリートはダウエル効果の影響を受ける 範囲ではく離破壊している.破壊モードは押抜きせ ん断破壊となった.

(2) UFC パネル RC 床版 合成面に凹部を一様に設けた P タイプの床版厚 110mm の供試体 U.RC11-PS1,

床版厚 130mm の供試体 U.RC13-PS1 の UFC 下面の ひび割れ状況は図-6(1),2),3)に示すように,輪 荷重の接地面から 45 度底面付近,すなわち RC 床 版供試体 RC13-S1 におけるダウエル効果の影響を受 ける範囲に微細なひび割れが密集している.本供試 体の UFC には直径 0.2mm,長さ 15mm の鋼繊維を 体積比で 2.0%配合したことから,鋼繊維の架橋効果 により,ひび割れが集中して発生したものである. 破壊時には,この微細なひび割れが密集している範 囲で,合成面のコンクリートが一面せん断によりは

囲で、合成面のコンクリートか一面せん断によりは く離している.また、合成面に凸部を一様に設けた C タイプの供試体 U.RC13-CS1 の UFC 下面のひび割れ 状況は図-6(1)、4)より、荷重載荷位置から 45 度 底面のダウエル効果の影響を受ける範囲は鋼繊維の 架橋効果により微細なひび割れが発生している.破 壊時はこのダウエル効果が及ぼす範囲で合成面がは く離している.また、ダウエル効果の影響を受ける 範囲では円形状に曲げ引張破壊している.C タイプ の合成面は、コンクリートが挿入される面積率が UFC の 60%であり、コンクリートのせん断強度が 2.8N/mm²であることから、P タイプに比して合成効 果が高まり、破壊時においても UFC のはく離はほ とんど見られず、合成効果が得られている.

5.3.2 走行荷重実験による破壊状況

(1) RC 床版 走行荷重実験における RC 床版供試体 RC13-R1 の UFC 下面のひび割れ状況は図-6(2),1) に示すように, RC 床版の底面に配置した主鉄筋の 位置にひび割れが発生している.破壊時のひび割れ 状況は,荷重が走行することから,軸直角方向の底 面の主鉄筋かぶり内ははく離破壊している. 破壊 は荷重増加中に押抜きせん断破壊となった.

(2) UFC パネル RC 床版 走行荷重実験においても P タイプの供試体 U.RC11-PS1 および供試体 U.RC13-PS1 の UFC 下面のひび割れ状況は図-6(2), 2), 3) に示すように,輪荷重載荷位置から 45 度底面の軸方向に微細なひび割れが支点付近まで発 生し,この微細なひび割れが密集している範囲では く離が生じている.供試体 U.RC11-PR1 は,輪荷重 が走行中に支点 B から 300mm 付近で,押抜きせん 断破壊となった.供試体 U.RC13-PR1 は支点 A から 300mm 付近で押抜きせん断破壊となった. 鋼繊維の 架橋効果によりダウエル効果の影響を受ける範囲に 微細なひび割れが密集し,この範囲から支点方向に

図-8 RC 床版および UFC パネル RC 床版下面のひび割れ状況

はく離が広がっている.これは、静荷重実験におけ る P タイプの破壊メカニズムと同様に、合成面に挿 入されているコンクリートが一面せん断破壊し、 UFC パネルのはく離が先行したものである.次に、C タイプの供試体 U.RC13-CR1 のひび割れ状況は図-6(2), 4)に示すように、P タイプと同様であるが、 微細なひび割れはダウエル効果の影響を受ける範囲 に集中し、その範囲のみがはく離している.よって、C タイプの場合が UFC と RC 床版コンクリートの付着 性能が良好であり、はく離の範囲はダウエル効果が 及ぼす範囲のみとなり,破壊は曲げ引張力の影響に より UFC パネルが曲げ破壊となった.

6. まとめ

(1) 静荷重実験による RC 床版と UFC パネル RC 床 版の耐荷力を比較すると,軽量化を目的として床版 厚 110mm とした P タイプは 1.03 倍となることか ら, UFC パネル RC 床版は同一支間長を有する RC 床版に対して軽量化を図ることが可能となる.また、 RC 床版の耐荷力に比して,床版厚 130mm の P タイ プは1.26, 1.22倍, Cタイプは1.27, 1.24倍となり. UFC に配合された鋼繊維の架橋効果により、いずれ も耐荷力が増加した.

(2) 走行荷重が作用した場合も RC 床版に比して, 床版 厚 110mm の P タイプの UFC パネル RC 床版は 1.09, 1.12 倍耐荷力が向上している. また, 床版厚 130mmのPタイプは1.38, 1.41倍, Cタイプは1.20, 1.28 倍となり、走行荷重が作用した場合も RC 床版に 比して耐荷力が幅に増加している.したがって、UFC パネル RC 床版の実用性が評価できることから、設 計厚さの減少あるいは長支間化が可能となる.

(3)静荷重実験と走行荷重実験の耐荷力を比較する と, RC 床版の場合は、走行荷重が作用する場合に は 28% 耐荷力が低下した. UFC パネル RC 床版の場 合は、19%の耐荷力低下は見られたが、UFC パネル を合成することで RC 床版に比べて約 10%の改善が 見られた.

(4)荷重とたわみの関係では、UFC パネル RC 床版 のたわみは, P タイプ, C タイプともに RC 床版に 比して約50%程度抑制されている.

(5)静荷重実験の場合の破壊状況は, RC 床版は車輪 の接地面から 45 度の傾斜角で押抜きせん断破壊と なった. P タイプの床版厚 110cm および床版厚 130cm の UFC パネル RC 床版は、いずれも輪荷重の 接地面から 45 度の傾斜角で押抜きせん断破壊とな り、合成面のダウエル効果が及ぼす範囲に微細なひ び割れが密集し、はく離破壊となっている. 床版厚 130cm の C タイプの UFC パネル RC 床版は, 合成 面のせん断強度が高いことから付着力が増大し,ダ ウエル効果が及ぼす範囲にのみはく離が生じ、それ 以外の合成面にははく離は見られない.

(6)走行荷重実験における破壊状況は、P タイプの UFC パネル RC 床版の場合、床版厚 110cm、床版厚 130cm ともに軸直角方向は接地面から 45 度の傾斜 角で押抜きせん断破壊となり、RC 部のダウエル効 果が及ぼす合成面から広範囲にわたりはく離破壊し ている. 床版厚 130cm の C タイプの場合はダウエ ル効果が及ぼす範囲ではく離は見られるものの、そ れ以外の合成面でははく離は見られない.

(7)静荷重実験および走行荷重実験における UFC パ ネル RC 床版は、RC 部は配置された引張主鉄筋お よび UFC パネルが曲げ引張力を分担して耐荷力性 能が向上した.また、合成面を C タイプとすること で付着面の合成効果が高まり,はく離の分布範囲が 抑制された. したがって、道路橋 RC 床版は C タイ プの UFC パネルとすることが望ましい.

参考文献

1) 阿部 忠, 木田哲量, 新見 彩, 高野真希子, 田中敏 嗣:UFC 埋設型枠 RC 床版の合成面のせん断強度およ び理論押抜きせん断耐力式,構造工学論文集, Vol. 55A, pp. 1478-1487, 2009.

2) 新見 彩, 阿部 忠, 木田哲量, 田中敏嗣: UFC 埋設 型枠を用いた RC 床版の実験耐荷力および疲労耐久性 評価に関する研究,構造工学論文集, Vol. 55A, pp. 1488-1496, 2009.

3) 土木研究センター:建設技術審査証明報告書「高強 度セメント系材料を用いた高耐久性薄肉パネル「ダク タルフォーム」」, 2005.

4)日本道路協会:道路橋示方書·同解説Ⅰ,Ⅱ,Ⅲ, 2004.

5) 園木 聡, 阿部 忠, 木田哲量, 水口和彦: 付着面を 改善した UFC 埋設型枠 RC 床版の耐荷力性能および押 抜きせん断耐荷力, 土木学会第 65 回年次学術講演会 講演概要集, V-535, pp.1069-1070, 2010.

6) 阿部 忠, 新見 彩, 木田哲量, 田中嗣敏: 走行荷重 が作用する UFC 埋設型枠 RC 床版の最大耐荷力および 耐久性に関する研究,材料, Vol.58, No.7, pp.619-626, 2009.

7) 小幡浩之, 西澤辰男, 佐々木 厳, 國府勝郎: UFRC -コンクリート複合部材の界面におけるせん断特性, 土木学会第 60 回年次学術講演会, pp.217-218, 2005.

8) 土木学会, コンクリートライブラリー「超高強度繊 維補強コンクリートの設計・施工指針(案)」, 2004.

9) 阿部 忠, 木田哲量, 高野真希子, 澤野利章, 加藤 清志:静荷重・走行荷重を受ける RC 床版の押抜きせ ん断耐力,構造工学論文集, Vol. 50A, pp. 919-926, 2004. 10) 阿部 忠, 木田哲量, 水口和彦, 川井 豊: 走行荷 重が作用する道路橋 RC 床版の押抜きせん断耐力評価 式,構造工学論文集, Vol. 55A, pp. 1468-1477, 2009.