アラミド連続繊維シート補強が割裂引張耐荷力に及ぼす影響に関する実験研究

〇澤野利章(日大生産工・教授)
木田哲量(日大生産工・教授)
阿部 忠(日大生産工・教授)
水口和彦(日大生産工・助教)

1. はじめに

日本の経済成長期に建設された土木構造物は、鉄 筋コンクリートにより作製されたものが多く存在す る。建設当初はメンテナンスフリーの半永久構造物 として取り扱われていたが、地球環境の変動や地震 の頻発、予想を上回る早さの技術革新による生活環 境の進化に伴い、構造物に対する負荷が大きくなり、 その対策の時期も早めなければならない状況にある。 また、予想を越えて早期に劣化・損傷が顕著になっ たもの、耐荷力の低下が懸念されるものに対して、 補強・補修による延命措置を採らざるを得なくなっ ている。

現在このような鉄筋コンクリート部材(以下RC 部材と称す)を補強・補修する方法には、連続繊維 シート巻き立て工法がある。連続繊維シート巻き立 て工法は、炭素繊維シートやアラミド繊維シート(以 下 シートと称す)などを、直接RC部材の表面に接 着するとこによって補強を行うものである。補強は シートの繊維方向を変えて接着することで、せん断 補強、曲げ補強、引張補強を行うことが可能である。

本研究においては、RCはり部材の補強に着目す ることとする。RCはりの曲げに対する補強は、R Cはり部材の曲げ引張の作用を受ける面部分にシー トを直接接着することにより、曲げ作用に伴う引張 による部材の伸びを制御して、コンクリートのひび 割れの抑制、鉄筋の伸びを軽減することで補強でき ることは明らかである。一方、せん断に対するに補 強は、せん断による引張作用を抑制するために、せ ん断ひび割れが発生する面に対して行うこととされ ている。

シートの接着方法は、シートの繊維方向とはり軸 方向を直角となるようにしたり、フープ状に巻きつ ける方法がある。しかし、はりの幅が大きい場合に は、せん断補強がどの程度の範囲まで有効であるか、 その効果範囲がはっきりしていない。

そこで、シートによるせん断補強の有効性を確認

するために円柱供試体に対してシート補強を施した 上で、割裂引張試験に準じた引張試験を行い、シー ト補強効果の有無、その枚数と耐荷力について考察 し、シート補強の効果を明らかにする。

2. 供試体

供試体は直径100mm、高さ200mmのコンクリート円 柱を用いる。コンクリートの最大骨材寸法は20mm、 平均圧縮強度は48.3N/mm²である。

シート補強は円柱供試体の円形断面に対して行う こととする。シートの材料特性値をTable 1に示す。 また、供試体は次の3タイプを各3本ずつ作製する。

Table 1 Mechanical properties of AFS

AFS	Weight	Tensile strength	Elastic modulus	Thickness
	g∕mُ	N∕mm [*]	kN/mm²	mm
AK-60	415	2060	118	0.286

①タイプI:シート補強を行わない。

各タイプの補強位置をFig.1に示す。また、補強の タイプに関わらず、供試体円形断面(端面)にFig.2 のようにロゼット型ひずみゲージを接着し、各方向 のひずみ計測を行う。なお、シート補強が施されて いる面については、シートの上面にひずみゲージを 接着する。

3. 実験方法

実験はJIS A1113 コンクリートの割裂強度試験 方法に準じて行う。通常割裂強度試験の結果は、割

②タイプⅡ:円柱供試体の両端円形断面にシートを 各1枚接着して補強を施す。

③タイプⅢ:タイプⅡと同じく両端円形断面にシー トを各2枚接着して補強を施す。

U) Borth end sides reinforcement Type II or III

Fig. 2 Measuring direction of strain

裂引張強度として算出することができるが、端面に 補強を施した場合、割裂面の長さを正確に把握する ことが困難であったため、割裂引張強度は算出せず、 載荷荷重の大きさで表現することとする。これはシ ート補強の効果により、割裂が供試体全長にわたっ ては発生せず、また、割裂の終始端を決定できなか ったからである。供試体をFig.2に示す方向でアムス ラーに設置し、荷重制御によって連続的に荷重とひ ずみの計測を行う。

4. 結果および考察

4-1 荷重―ひずみ

各タイプの載荷方向、載荷直角方向のひずみと荷

重の関係をFig.3~5に示す。円柱供試体の両端二面 においてひずみを計測していることから、それらを 平均したものを図示する。各図の(a)に載荷方向の ひずみ、(b)に載荷直角方向のひずみを示す。また、 両端面のひずみ値を平均したものを、供試体No.1~3 毎と全供試体の平均を示したものである。

Fig. 3はタイプ I のひずみと荷重の関係である。図 中の平均とは、3本の供試体の平均値を示す。

(a) Rectangular to loading direction

Fig.3 Strain of Type I

本実験の耐荷力より割裂引張強度を算出すると、 平均3.34N/mm²となり、圧縮強度から算出したコンク リートの引張強度3.06N/mm²とほぼ近い値となった。 載荷直角方向の平均引張ひずみは、80kN付近まで直 線的な増加であるが、これ以降は急激なひずみ増加 に転じており、弾性範囲の限界を超えていることが 分かる。一方、載荷方向のひずみは概ね100kN付近ま で直線的に増加した後、供試体の破壊によってひず

(b) Loading direction

Fig. 4 Strain of Type II

ゲみージが破断している。供試体は圧縮の弾性範囲 限界には達していないことが分かる。

Fig. 4は、タイプⅡの場合を同様に示したものであ る。タイプⅡではシート補強により、載荷直角方向 のひずみ増加が少なくなっている。平均ひずみでは、 約100kN程度まで直線的な増加を示し、その後塑性的 性質へ移行して破壊しており、シート補強により耐 荷力を約1.25倍大きくすることができた。載荷方向 ひずみも耐荷力が大きくなったことから、破壊が遅 れるため最終的に大きな値となっている。しかし、 弾性範囲内において破壊する状況はタイプⅠと同様 である。

Fig.5は、タイプⅢの場合を示したものである。タ イプⅢの場合は、これまでのタイプⅠ、Ⅱとは異な り、引張、圧縮両ひずみが弾性範囲の限界を超える 現象は見られない。平均耐荷力は約130kNとなり、無 補強時より1.6倍、シート1枚補強時より1.3倍、

(b) Loading direction

Fig.5 Strain of Type III

耐荷力が大きくなっている。しかし、この供試体の ゲージ接着面では弾性範囲の限界を超えたひずみの 挙動が見られないまま破壊しており、補強面だけを 考えた場合には、この面はより大きな荷重による引 張力に耐えられるものと考えられる。すなわち、タ イプI、IIにおいては端面の補強効果がない、また は小さいが、2枚のシートで補強することによって 端面の補強は充分なされていることがわかる。しか し、補強効果が及ばない部分において引張破壊が進 行し、その破壊が端面にまで進行して破壊している と考えられる。ただし、補強効果範囲がタイプIよ り大きくなることから、耐荷力は向上させることが 可能となっている。

タイプ I における耐荷力時の載荷直角方向はひず み約150 μ (以降、 μ は×10⁶を示す)である。これよ り、割裂破壊は引張ひずみが150 μ に達すると発生す ると仮定する。Fig. 4(a)のタイプ II では、この150 μに達する荷重が大きくなっていることは、耐荷力 が向上していることを示し、さらに150μに達する前 に破壊しているのは、端面から破壊が進行しておら ず内部からの破壊が、端面に到達して破壊に至って いると考えられる

4-2 破壊形態

タイプ I の破壊形態は、載荷線とその対辺にひび 割れが発生し、両端面に達して破壊した。このとき に端面のひずみゲージも切断されている。

Fig. 6にタイプⅡの破壊状況を示す。割裂引張試験 では通常、この状態になる前に試験を終了するが、 本図は断面が分割されるまで載荷を行ったものであ る。

Fig.6 Destruction of type II

タイプⅡでは、端面がシートで補強されているため ひび割れが端面を貫通することはなく、図中の補強 効果範囲を残してひび割れは円周方向に進展して3 分割された。

Fig. 7も同様にタイプⅡのひび割れ状況である。 載荷線に沿ってひび割れは進展しているが、Fig. 6 と同様に端面の手前でひび割れは消失している。ま た、図中の上から1/3程度のところで円周方向にひび 割れの進展する方向が変わって、裏側の対辺まで到 達している。この上部1/3の部分が補強効果の範囲と みられる。

つぎにタイプⅢの破壊状況をFig-8に示す。

タイプIIIでは、シート2枚により補強されている ため、補強効果範囲がタイプIIより大きくなってい ることが分かる。ひび割れは載荷線に沿ったものが 中央部に発生し、その長さは供試体全長の1/3程度に 留まっている。円周方向のひび割れも中央付近で発 生し対辺まで到達していた。タイプIIIの荷重とひず み関係であるFig.5にも現れているように補強効果 範囲が大きくなったため、端面のひずみが小さくな る要因でもあることは明らかである。破壊は供試体

Fig.8 Crack in type 🎞

中央部に発生し、この周辺の破壊が進行することに より荷重を支持することができなくなる。

5.まとめ

①割裂引張試験の供試体の破壊形態から、シート補強を施すことによって、割裂引張破壊に対する耐荷力の向上を図ることができる。

②シート補強を施した端面のひずみは抑制できるが、 補強効果範囲外では、ある限界のひずみ量に達する とひびわれが発生・進行して破壊に至る。

③シートの使用枚数を増やすことによって、補強効 果範囲は広がると考えられるが、その限界について は明らかにできなかった。