迷惑施設の配置問題および連続体の形状最適化問題について

1. はじめに

本研究では,複雑現象への局所的相互作用の モデルの適用について明らかにするとともに, 従来の数理計画法によらず自己組織化による最 適設計への応用について検討することを目標と した。このようなモデルを用いたモデリングと コンピュータシミュレーションは予測・評価・ 意思決定の重要なデータを提供するものと期待 できる。また,アリの探索行動に見られるフェ ロモンの作用や,神経細胞に見られるニューロ ンの働きに特徴的なアキュムレーションとエヴ アポレーションの効果をアルゴリズムに組み込 んだ構造形態最適化の新しいヒューリスティッ クスは,さまざまな最適化において柔軟な適用 が期待される。

2. 迷惑施設の配置問題について

建設副産物を取り扱う中間処理施設・最終処分 場を対象として,建設副産物の流通に着目した立 地特性について分析を行った。中間処理施設・最 終処分場は,住民は施設の必要性は理解するもの の近隣立地に反発する傾向にあり,NIMBY と呼ば れている。このような迷惑施設の配置モデルは, 施設間の距離,住民との距離を最大化する。本研 究ではこの考え方に加えて,CFDの一種である格 子ボルツマン法にヒントを得て,建設副産物発生 量に対する施設の処理能力の最適化,及び発生現 場一中間処理施設一最終処分場間の輸送距離の 最適化という側面からモデルを構築した。

2.1 研究対象領域

研究対象領域は,国土交通省発行の国土数値情 報(土地利用)より兵庫県に該当する領域とした。

研究代表 三井 和男 (数理情報工学科)

3次メッシュ1/10 細分区画(約100m メッシュ) の(田,畑,果樹園,森林,荒地,建物用地,幹 線交通用地,湖沼,河川等)の9カテゴリーで, 本領域の総メッシュ数は119万メッシュとなる。 発生現場,中間処理施設,また最終処分場が立地 する郊外をカバーしており,ケーススタディーと して最適であると判断した。

2.2 計算空間の設定

上記領域にダミー81 万メッシュを加えた 2,000×1,100=220 万メッシュからなる矩形の 計算空間を設定し,土地利用レイヤーや中間処理 施設位置レイヤーなど,逐次必要な計算空間を追 加して分析を進める。計算手法の詳細については 参考文献 1)にゆずり省略する。

Fig.1 建設副産物発生予想面積の計算

2.3 解析結果

兵庫県を事例に建設副産物の発生状況と総体 的な物流システムを推定し,中間処理施設・最終 処分場の処理能力との比較による現状評価した. 中間処理施設に関しては,兵庫県を事例にした建 設副産物中間処理施設は,市街地に近接したり, 処理能力過大施設,能力不足施設が存在している ことがわかった。最終処分場に関しては近年,中 間処理施設におけるリサイクル率が大幅に向上 したために,今回対象としていない大阪府をはじ めとした近隣他府県からの搬入に配慮したとし ても,最終処分場には余裕があることが判明した. しかし,土壤に永久に残るものであることから, 今後もリサイクル率を向上し,さらに最終処分量 を減らす努力が必要であろうと考えられること がわかった。

3. 連続体の形状最適化問題について

ホップフィールドネットワークは,ニューラル ネットワークの一つでニューロンへの信号が双 方向に伝達されるモデルである。これはネットワ ークのエネルギー関数が極小化する性質を利用 して最適化問題の近似解を求める手法で,連想記 憶,構造同定,欠陥同定などにも応用されている。 このエネルギー関数は、シナプス結合荷重やしき い値を用いてニューロンの出力値の二次形式で 表現しなければならない点に難点がある。本研究 は、改良型ホップフィールドネットワークを形状 最適化問題に応用し,いくつかの例題に適用する ことによってその有効性を検討した。本手法の特 徴は,従来の手法のように構造物を構成する構造 要素の評価を応力などの物理量で行うのではな く,構造要素をホップフィールドネットワークの ニューロンとして、その出力値によって評価する ことにある。これによって定式化された形状最適 化問題を直接解くことが可能になる。

3.1 改良型ネットワークモデル

ホップフィールドネットワークでは, ニュー

ロン i の内部状態 u_i(t) が 状態方程式(1)によ って変化する時,式(2)で表されるネットワーク のエネルギー関数が単調に減少する。

$$\frac{du_i(t)}{dt} = -\frac{1}{C}u_i(t) + \sum_{j=1}^n T_{ij}v_j(t) + I_i(t)$$
(1)

$$E(t) = -\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} T_{ij} v_i(t) v_j(t) - \sum_{i=1}^{n} I_i v_i(t)$$
(2)

ここで、 T_{ij} はニューロンjからiへのシナプス結 合荷重で、 $T_{ii}=0$ 、 $T_{ij}=T_{ji}$ である。 I_i はニューロン iのしきい値で、C (C>0)は入力の減衰定数であ る。さらに、 $v_i(t)$ はニューロンiからの出力値を 表し、0から1までの連続値である。このニュー ロンの出力値 $v_i(t)$ は、内部状態 $u_i(t)$ の単調増加 関数として次式(3)のようなシグモイド関数で表 される。

$$v_i(t) = \frac{1}{1 + \exp(-2u_i(t)/\mu)}$$
(3)

式中のµは、シグモイド関数の形状係数を表 すパラメータである。ホップフィールドネット ワークによって最適化問題を解く場合、目的関 数と制約条件をネットワークのエネルギー関数 で表現する必要がある。このとき、式(2)のよう にニューロンの出力値の二次形式でエネルギー 関数を表し、自己結合のないことや対称性を考 慮してシナプス結合荷重としきい値を決定しな ければならない。改良型ホップフィールドネッ トワークは、この点を改良したもので式(1)に示 した状態方程式の代わりに次の状態方程式(4) を用いる。

$$\frac{du_i(t)}{dt} = -\frac{\partial E(t)}{\partial v_i(t)} \tag{4}$$

上式の*E*(*t*) はネットワークのエネルギー関数 であるが,式(1)のようにシナプス結合荷重*T_{ii}*や しきい値*I_iが式中に現れていないので、これを直接、最小化問題の目的関数で置き換えればよい。*

3.2 最適化手順

改良型ホップフィールドネットワークによる 形状最適化の計算手順を以下に示す。

1)設計領域の設定

Fig.2で示すように設計領域を小さな正方形の 構造要素として区切り,これらをニューロンに 対応させる。

2) 最適化問題の設定

ペナルティ係数 λ を用いて最適化問題の目的関数 f と制約条件 g を次式(5)のような修正目的関数に変換し、これをネットワークのエネルギー関数 E(t) にする。

$$E(t) = f(v_i(t)) + \lambda g^2(v_i(t))$$
(5)

3) 初期値, 初期形状, パラメータの設定

次に, t=0 におけるニューロンの出力値(本論の 計算例では $v_f(0)=0.5$ としている),初期形状, 形状係数 μ , ペナルティ係数 λ ,削除数 R を設 定する。

4) ホップフィールドネットワークの動作 構造物をFEMで解析し、構造要素の相当応力等 を求めてネットワークのエネルギー関数を計算 する。このエネルギー関数が最小化するまで式 (4)のホップフィールドネットワークを繰り返 して動作させ、ニューロンの内部状態 u_i(t) を 求める。なお、式(4)におけるステップ幅 Δt は 計算回数を表しているので、全ての計算例にお いてΔt=1とした。

5)構造要素の削除

ニューロンの出力値v_i(t) は、収束した内部状態 u_i(t)を式(3)のシグモイド関数に代入することに よって求められるが、図2で示すようにシグモイ ド関数の形状係数 μ に敏感に反応してしまう。 したがって、出力値が0近傍となる構造要素だけ を削除する場合、1ステップで多くの構造要素 が削られて,FEM解析を終了してしまうことが ある。このため形状係数を適切に設定するため には多くの試行錯誤が必要になる。この問題点 を解決するために,本研究では,出力値が0近傍 となる構造要素を削除するのではなく,出力値 の大小関係を比較し,小さい方からR個ずつ構 造要素を削除することにした。この削除する個 数Rはパラメータとして与える。このように構 造要素を削除することによって,安定して計算 が実行できるようになった。

6) 以下, 解が収束するまで4) と5) を繰り返す。

3.3 本手法の適用例

手法の詳細は参考文献 2)にゆずり、ここでは 適用例を紹介する。Fig.3に示すような設計領域 (10m×5m)で構成される Michell タイプ構造の問 題について考える。設計領域の下部中央に集中荷 重1kNを作用させ、両端をピン支持する。板厚 は 0.1m, ヤング率は 100GPa, ポアソン比は 0.3 である。構造要素のサイズは0.2m×0.2mとし、 50×25 に分割した。初期形状は設計領域の全て に構造要素が存在するものとし、ペナルティ係数, 削除数を, それぞれ *λ=1*, *R=10* とした。最適設 計の目標は重量を最小にすることで,制約条件は 構造要素 i における相当応力 σ_i の平均値が,予 め目標として定めた相当応力 $\sigma^{E} = 6 kPa$ になるこ とである。この問題の目的関数と制約条件は, ニ ューロン i の出力値 viを用いて式(6)及び式(7)の ように表される。

Fig.2 ニューロンと構造要素の関連

目的関数:
$$f = \frac{1}{W_0} \sum_{i=1}^n \Delta w v_i \rightarrow \min$$
 (6)

制約条件:
$$g = \frac{1}{n\sigma^E} \sum_{i=1}^n \sigma_i v_i - 1 = 0$$
 (7)

式中の W_0 , Δw はそれぞれ初期形状の体積,一つ 構造要素の体積を表し,n は構造要素の個数を表して いる。Fig.4に Michell タイプ構造の生成過程を 示す。Fig.5 は初期形状を全設計領域にした場合 の相当応力とエネルギー関数(修正目的関数)の 推移を示したものである。

Fig.3 設計領域

Fig.5 相当応力とエネルギー関数値の推移

Fig.6は振動数制御の例題を示している。上図 のように板の中央部分に穴が開き、ステップが経 過するにつれてその穴が広がっていき、27 ステ ップでエネルギー関数が最小になった。目的関数 と制約条件を自由に簡単に設定できることは本 手法の特徴である。

Fig.6 振動数を制御するための孔の最適化

4. おわりに

局所的相互作用のモデルによって現象の解明 と最適化問題への応用が可能であることを示し た。迷惑施設の配置問題については建築副産物の 問題を取り上げ,手法の有効性を確認できた。連 続体の形状最適化問題では,改良型ホップフィー ルドネットワークを応用し,最小重量問題,固有 振動数最大化問題,ロバスト最適化問題に適用し て,その有効性を示すことができた。

参考文献

 1) 中澤公伯,三井和男他:建設副産物の流通と処 理施設立地に関する数理的考察,情報システム利 用技術シンポジウム論文集,日本建築学会,
 (2008), pp. 25-30

 2) 瀧 圭佑, 曽我部博之, 三井和男: 改良型ホッ プフィールドネットワークを用いた連続体の形 状最適化, 構造工学論文集, (2009 掲載決定)