亜鉛ビス(1.4-ジデシルベンゾ)-ビス(2.3-ピリド)ポルフィラジンの光増感作用

1. 緒 言

フタロシアニン化合物は古くからの染料・顔料など の着色剤はもとより、近年では分子デバイス、オプト エレクトロニクス、フォトニクス、表示材料など様々 な方面に適応できる重要な機能性色素として利用さ れるようになった。最近、機能性色素としてのフタロ シアニン化合物は医療分野においても注目されるよ うになってきている。医療分野において、フタロシア ニン化合物はガン光線力学療法(PDT; photodynamic therapy of cancer)用の光増感剤としての利用が検討さ れている¹⁻³。

一般に、PDT は皮膚浸透性が高い 600 から 850 nm の近赤外領域のレーザー光を光増感剤の存在下で体 外から照射し、発生する一重項酸素にてガン細胞を攻 撃する治療法として知られている⁴。

フタロシアニン化合物はポルフィリン類縁体であ るが、π-π*遷移によるQ帯に基づく600から850 nm の近赤外領域に強い吸収極大を有している。また、フ タロシアニン化合物はポルフィリン化合物と異なり 毒性が無く、容易に代謝されるという利点を有してい る⁵⁶⁾。このことから、フタロシアニン化合物は次世代 のPDT 用光増感剤として、その応用が脚光を集めは じめている¹⁶⁾。

筆者らが報告したベンゼン環をピリジン環に換え た長鎖アルキル基を有するフタロシアニン類縁体⁹は、 ピリジン環の窒素原子を四級化することにより水溶 性になることから、アルキル基による脂溶性⁹と水溶 性の両親媒性⁸となり、興味深い化合物である。

PDT の基礎的研究として、分子内にそれぞれ二つのノンペリフェラル位置換ジデシルベンゼン環とピ

坂本 恵一(応用分子化学科) 奥村 映子(化技教研)

リジン環を有する亜鉛ビス(1,4ジデシルベンゾ)ビス (3,4ピリド)ポルフィラジンの三重項寿命を測定し、3, 亜鉛ビス(1,4ジデシルベンゾ)ビス(3,4ピリド)ポルフ ィラジンが PDT 用光増感剤として有用であることを 報告した^{9,10)}。この化合物亜鉛ビス(1,4ジデシルベン ゾ)ビス(3,4ピリド)ポルフィラジンは有機溶媒に高い 溶解性を持ち、脂溶性を示す。また、この化合物を四 級化したものは水溶性となる。したがって亜鉛ビス (1,4ジデシルベンゾ)ビス(3,4ピリド)ポルフィラジン はカチオン性の両親媒性となると考えられる。このよ うな両親媒性フタロシアニン類縁体は次世代 PDT 用 光増感剤として良好な化合物になると期待できる^{&ID}。

Nykong ら¹¹⁾は、フタロシアニン化合物である 2,3-テトラピリドポルフィラジンとその四級化化合物で ある両親媒性物質が通常使用されている亜鉛フタロ シアニン誘導体光増感剤と比較して優れた性質を示 すことを報告している。この両親媒性物質は次世代 PDT 用増感剤として最適な物質であると考えられる。

ここでは、既報の亜鉛ビス(1,4-ジデシルベンゾ)ビス (3,4 ピリド)ポルフィラジンと類似の化合物であり、三 重項寿命が長い、亜鉛ビス(1,4-ジデシルベンゾ)ビス (2,3-ピリド)ポルフィラジン(2,3-PP)を合成し、この化 合物の四級化による両親媒化を検討した。

得られた両親媒性化合物は、その電子授受能力をサ イクリックボルタンメトリー(CV)によって検討した。

2. 実験

2.1 試料

2,3-PP は 3,6-ジデシルフタロニトリル 0.12 g

(0.3mmol)、2,3-ジシアノピリジン 0.04 g (0.3 mmol)、 塩化亜鉛(II) 0.05 g (0.37 mmol)および1,8-ジアザビシ クロ[5.4.0]-7-ウンデセン(DBU) 0.07 g (0.46 mmol)を溶 媒の1-ペンタノール7 cm³中で4時間還流することに より合成した。反応後、濃青色液体を室温まで冷却し、 トルエン 50 cm³を加えてろ過した後、トルエンを留去 した。粗生成物はトルエンを展開溶媒とした薄層クロ マトグラフィー(TLC; Merk 60 F₂₅₄)によって精製し、単 一の濃青色固体として得た。収率 80%

2,3-PP はプロトン核磁気共鳴(¹H-NMR) スペクトル、 赤外線(IR) 吸収スペクトル、紫外可視吸収(UV-vis) ス ペクトルおよび元素分析によって確認した。

2.2 両親媒化反応

四級化剤はジメチル硫酸(DMS)、ジエチル硫酸 (DES)およびモノクロロ酢酸(MCAA)を用いた。

窒素原子の四級化反応は 0.15 mmol (0.17 g)の 2,3-PP を 5 cm³の乾燥 *N*,*N*-ジメチルホルムアミド (DMF)中にて、四級化剤がそれぞれ DMS の場合 1.5 mmol (0.2 g)、DES の場合 0.6 mmol (0.1 g)、MCAA の 場合 6 mmol(0.57 g)を加え、140℃にて 120 分間還流 することによった。

反応終了後、生成物はアセトン 20 cm³を加えて室温 まで冷却し、ろ過後、溶媒を留去した。粗生成物はテ トラヒドロフラン-トルエン 8:2 混合溶液を展開溶媒 として TLC によって精製した。主生成物は TLC プレ ートから削り取り、ピリジンによって抽出した。

2.3 測定

¹H-NMR スペクトルは 15 mg cm³重水素化ジメチル スルホキシド溶液にて Bruker AM-400 型核磁気共鳴装 置を用いて測定した。IR スペクトルは島津 FTIR-8100A 型フーリエ変換赤外分光光度計を用い、 臭化カリウム錠剤法により測定した。UV-vis スペクト ルは島津 UV-2400PC 型紫外可視分光光度計を用いて 測定した。測定用媒はピリジン、トルエンおよび水を 使用した。蛍光スペクトルの測定は日立 F-4500 型分 光蛍光光度計を使用した。測定溶媒はピリジンおよび 水を用いた。元素分析は Perkin-Elmer 2400CHN 型元素 分析装置を用いて測定した。CV は BAS CV-50W 型ボ ルタンメトリーアナライザーを使用した。電極は作用 電極および対電極として白金電極を、参照電極として 銀/塩化銀電極を使用した。支持電解質はテトラブチ ルアンモニウム過塩素酸塩(TBAP)を用いた。CV の測 定方法は既報¹²⁻¹⁵⁾と同様に行った。なおCV の測定は、 すべて試料を 7.86 x 10⁴ mol dm⁻³0.1 M-TBAP 溶液と して行った。

2.4 細胞培養

IU-002 細胞を PDT 用試験に用いた。この IU-002 細胞は、アフリカミドリザル由来のものである。IU-002 細胞はウシ胎児血清 5%を含む MEM 培地にて保持した。その IU-002 細胞を 96 穴培養プレートに入れて培養した。そこに 2,3-PP などの光増感剤を培地に 0 から 2 mg cm-3 の濃度範囲で入れ、37℃ にて 3 時間培養した。その後、IU-002 細胞は培地を除去し、リン酸緩衝溶液で洗浄し、新たな培地を与えられた。IU-002 細胞 にハロゲン光を 10 分間照射した。ハロゲン光照射前後の IU-002 細胞の観察は蛍光顕微鏡を用いて行った。

3. 結果および考察

3.1 2,3-PP の合成と両親媒化

2,3-PP は ¹H-NMR、IR および UV-vis スペクトルと 元素分析により同定し、目的構造であることが確認で きた(**表-1**)。

2,3-PPのDMS、DESおよびMCAAによる四級化生 成物はそれぞれ、2,3-PP-DMS、2,3-PP-DESおよび 2,3-PP-MCAAと略記する。

2,3-PPの四級化生成物はすべて、暗青色粘張性固体 として得られた。四級化生成物の収率はそれぞれにお いて17から28%であり、平均23%で合成できる。

Compounds	Yield	$/\%$ $\nu_{\rm max}({\rm KBr})/c$	cm ⁻¹ Found (calcd) /	% [*] δ('H 400 MHz)/ppm
2,3-PP	80	2960(ν _{с.н}), 1600, 1 (ν _{с.с.}), 1200, 1100,	500, 1420 С : 73.67(73.68) H : 8.30(8.30 750, (δ _{сн}) N : 12.28(12.28)	0.90(m, 12H, CH ₃), 1.61-2.61(m, 64H, CH ₂), 4.18-4.36(m, 8H, α-CH ₂),7.45(m, 4H, Arom), 8.26(m, 6H, Py)
2,3-PP-DMS	25	3070, 2980(ν _{с.н}), 1 (ν _{с.с.}), 1250, 1100, 660(δ _{с.н})	500, 1400 C : 49.03(49.03) 950, 810, H : 3.05(3.09) N : 21.39(21.43)	0.90(m, 12H, CH ₃), 0.95-1.45(m, 56H, γ -CH ₂), 1.60-2.41(m, 8H, β -CH ₂), 4.05(s, 6H, CH ₃), 4.25-4.42(m, 4H, α -CH ₂), 7.45(m, 4H, Arom), 8.02(m, 6H, Py)
2,3-PP-DES	21	3480(ν _{о.н}), 3050, 29 1600, 1460, 1400(ν 1150(ν _{s-0})1250, 920 770(δ _{с.н}), 580(δ _{с.s}	960($\nu_{c,n}$), C: 37.14(37.11) (), 1350, H: 1.77(1.78) N: 18.54(18.54) (),	0.86(m, 12H, CH ₃), 1.02-1.63(m, 56H, γ -CH ₂), 1.88-2.61(m, 8H, β -CH ₂), 4.26- 4.50(m, 4H, α -CH ₂), 7.37(m, 4H, Arom), 8.22(m, 4H, Py)
2,3-PP-MCA	A 24	$\begin{array}{c} 3480(\nu_{_{\rm OH}}), 3050, 29^{\circ}\\ 1740(\nu_{_{\rm C^{\circ}}}), 1600, 150\\ 1400(\nu_{_{\rm C^{\circ}}}), 1210, 110\\ 790, 690(\delta_{_{\rm CH}}) \end{array}$	$\begin{array}{ll} 70(\nu_{\rm CR}), & C: 45.02(45.05) \\ H: 2.53(2.52) \\ 00, & N: 17.48(17.50) \\ 00, 940, \end{array}$	0.87(m, 12H, CH ₂), 1.13-1.70(m, 56H, γ -CH ₂), 1.82-2.61(m, 8H, β -CH ₂), 4.11-4.38(m, 4H, α -CH ₂), 6.20(s, 2H, CH ₂), 7.14-7.27(m, 4H, Arom), 8.7316(m, 6H, Py)

Table 1 Analytical data of zinc bis(1,4-didecylbenzo)-bis(2,3-pyrido)porphyrazine and its quarternized compounds.

*Dimethy lsulfoxide-d6

四級化生成物は¹H-NMR、IR スペクトルおよび元素 分析により同定した。

2,3-PP-DMS は元素分析値、¹H-NMR および IR スペ クトルから、目的構造であることが確認できた。

2,3-PP-DES と DES との反応生成物である 2,3-PP-DES は、¹H-NMR スペクトルにおいて *N*-エチ ル基が見られず、IR スペクトルにおいて S=O 伸縮振 動が観察されたことから、四級化による *N*-エチル化が 生じていないと考えられる。この DES は銅ジベンゾ 2,3-ジピリドポルフィラジンとの反応と同様に¹⁰、芳 香族求核置換によって進行するスルホン化と考えら れる。したがって 2,3-PP-DES は ¹H-NMR スペクトル におけるピリジンプロトンの水素数比から 2,3-PP に おけるピリジン環のいずれかの位置にスルホ基を有 した構造と考えられる。

2,3-PP-MCAA は元素分析値、¹H-NMR および IR スペクトルから、目的構造であることが確認できた。

3,4-PP-DMS、3,4-PP-DES および3,4-PP-MCAA の構 造は元素分析値、¹H-NMR スペクトルにおける吸収の 帰属とプロトン数比および IR スペクトルにおける吸 収から、ここに示した構造であると考えられる(図-1)。当然、3,4-PP と同様に3,4-PP-DMS、3,4-PP-DES および 3,4-PP-MCAA は、それらの分子中に存在する ピリジン環の位置と配向方向の異なる5つの位置異 性体の混合物である。 2,3-PP はデシル基を有するため、トルエン、クロロ ホルム、ピリジン、メタノールなどの有機溶媒に可溶 であるが、水には不溶であった。

2,3-PP-DMS、2,3-PP-DES および2,3-PP-MCAA はト ルエン、クロロホルム、ピリジン、メタノールなどの 有機溶媒ばかりではなく、水にも溶解することが確か められ、両親媒性を示すことが裏付けられた。なお、 溶解性は各々の試料 5 mg をそれぞれの溶媒 0.5 cm³へ 加え、完全に溶解したか否かで判定した。

3.2 両親媒化生成物の分光特性と酸化還元 特性

UV-vis スペクトルにおいて、両親媒化生成物はすべ て、ポルフィラジン環の HOMO-LUMO 間に相当する π-π*遷移による Q 帯に基づく 700 nm 付近に吸収極大 が観察され、3,4-PP および 2,3-PP における Q 帯吸収の 686 nm および 663 nm よりも長波長側にシフトしてい た。水溶媒における両親媒化生成物の UV-vis スペク トルは、有機溶媒を用いたときよりも短波長側にシフ トしており、幅広となっていることが見出された。両 親媒化生成物は水溶液中において、分子会合しやすい ことが推測される(**表-2)**。

CV の形状は四級化の前後で大きく変化していることが観察された。酸化還元電位は、2,3-PP では3つの

Fig.1 Molecular structures of quaternized compounds

Q-band Fluorescence Fmax pyridine / nm λ max pyridine / nm Compound λ max water / nm Fmax water / nm 2,3-PP 687 694 a665 2,3-PP-MCAA 679,650 687,647 692 688 a<u>677, a</u>620 2,3-PP-DES 693,658,628,597 708, 687, 652 698 691 a673, a645, a605 2,3-PP-DMS 746, 673, 649, 606 723, <u>676</u>, 646 683 688 a738, a668, a641, a600

 Table 2
 Uv-Vis and fluoresence spectral data of zinc bis(1,4-didecylbenzo)-bis(2,3-pyrido)porphyrazine and its quaternized compounds

Underline; main peak

a in toluene

アノード波と4つのカソード波の7種類の不可逆ピ ークとして現れていた。2,3-PP の四級化生成物の酸化 還元電位は四級化剤の違いによってそれぞれ互いに 異なっているが、同じ四級化剤を用いた生成物どうし はもとのフタロシアニン類縁体が異なっても、同じよ うな酸化還元電位が現れていた。CV は 2,3-PP-DMS では2つのアノード波と4つのカソード波が、 2,3-PP-DES では4つのアノード波と2つのカソード 波が、2,3-PP-MCAAでは2つのアソード波と3つのカ ソード波が現れた。さらに、32,3-PP-DMS および 2,3-PP-DES は可逆波が還元電位側で現れていた(図
-2、表-3)。

フタロシアニン化合物の酸化還元は中心金属とフ タロシアニン環の相互作用でおこることが知られて いる¹⁰。しかし亜鉛を中心金属とするフタロシアニン 化合物では、酸化還元は中心金属の亜鉛が不活性であ り、フタロシアニン環のみで生じている¹⁰。このこと は2,3-PP でも同様であり、それらの酸化還元はフタロ シアニン環によるものと考えられる。すなわち、2,3-PP

Fig, 2 Cyclic voltammograms of zinc bis(1,4-didecyibenzo)-bis(2,3-pyrido)porphyrazine and its quaternized compounds

で観察されたCV形状の違いは分子中のピリジン窒素の影響と推定できる。

一般に、フタロシアニン化合物の酸化還元はポルフ ィラジン環の18π電子に起因する環電流および環電流 の電気的環境に影響を及ぼす側鎖の置換基効果に依 存している^{10,17-23}。すなわち四級化によって両親媒性 となったことで、2,3-PP-DMS および2,3-PP-DES は還 元側にて電子移動が起こることを示している。また、 すべての四級化生成物の酸化還元電位は四級化前の 化合物に見られるピークが観察される。したがって、 2,3-PP の電子授受能力は四級化によって変化しないと 考えられる。

3.3 ガン細胞での評価

IU-002 細胞に注入した 2,3-PP-DMS の蛍光物質に注 目を、PDT の評価に使用した。この系では細胞が破壊 されていることが観察可能である。細胞が破壊されな い場合、蛍光物質は選択的に細胞中で濃縮される。 10分間はハロゲン光を照射した後、細胞が破壊され て蛍光の消失が観察された(図-3)。

このことは、光を照射された IU-002 細胞中の 2,3-PP-DMS はその細胞の破壊を引き起こされると考 えられる。またこの現象は IU-002 細胞中の 2,3-PP-DMS による蛍光の減少によって検出できる。

4. 結論

分子内にそれぞれ二つのノンペリフェラル位置換 ジデシルベンゼン環とピリジン環を有する 3,4-PP お よび 2,3-PP は DMS、DES および MCAA を用いて四 級化反応を行った。

四級化剤に DMS および MCAA を用いた場合に四 級化が達成でき、DES ではスルホ基が導入された。こ れら生成物は両親媒性を示した。

すべての四級化生成物の酸化還元電位は四級化前

(a)

(b)

Fig. 3 Fluorescence image of IU-002 cells. (a) Control, (b) Incubated with 2,3-PP-DMS irradiated with halogen light for 10 minutes.

の化合物に見られるピークが観察された。したがって、 2,3-PPの電子授受能力は四級化によって変化しないと 考えられる。

IU-002 細胞中に 2,3-PP-DMS を注入して光を照射すると、その細胞は 2,3-PP-DMS によって破壊を引き起こされることがわかった。

文 献

- 1) B. Paquette, H. Ali, R. Langlis, J. E. van Lier:
- Photochem. Photobiol., 47, 214 (1998).
- 2) D. Wohrle, N. Iskander, G. Graschew, H.Sinn, E. A.

Fridrich, W. Maier-Borst, P. Schlag: Photochem.

Photobiol., **51**, 351 (1990).

- 3) K. Fukushima, K. Tabata, I. Okura: *J. Porphyrins Phthalocyanines*, **2**, 219 (1998).
- 4) G. Jori: J. Photochem. Photobiol., B:Biol., **36**, 87 (1996).
- 5) K. Tabata, K. Fukushima, K. Oda, I. Okura: J. Porphyrins Phthalocyanines, **4**, 278 (2000).
- T. J. Dougherty: J. Photochem. Photobiol., 58, 895 (1993).
- 7) M. J. Cook, I. Chambrier, S. J. Cracknell, D.A. Mayes,D. A. Russel: *Photochem. Photobiol.*, **62**, 542 (1995).
- 8) M. P. De Dilippis, D. Dei, L. Fantetti, G. Roncucci: *Tetrahedron Lett.*, **41**, 9149 (2002).
- 9) K. Sakamoto, E. Ohno-Okumura, T. Kato: J. Jpn. Soc.,

Colour Mater., 76, 342 (2003).

- 10) 加藤拓, 坂本恵一: 色材, 75, 214 (2002).
- I. Seotsanyana-Mokhosi, N. Kuznetsova, T. Nyokong: J. Photochem. Photobiol. A: Chem., 140, 215 (2001).
- 12) K. Sakamoto, E. Ohno: J. Soc. Dyeres Colourist., **112**, 368 (1996).
- K. Sakamoto, E. Ohno: *Prog. Org. Coat.*, **31**, 139 (1997).
- 14) 大野映子, 坂本恵一: 日化, 1995, 730.
- 15) 大野映子, 坂本恵一: 日化, 1997, 58.
- 16) C. C. Lezonoff, A. B. P. Lever:"Phthalocyanines Properties and Application, Vol. 3", p.23, VCH, New York (1993).
- 17) 坂本恵一, 芝宮福松: 色材, 59, 517 (1986).
- 18) 大野 (奥村) 映子, 坂本恵一: 色材, 72, 345 (1999).
- 19) K. Sakamoto, E. Ohno: Dye Pig., 35, 375 (1997).
- 20) K. Sakamoto, E. Ohno: Dye Pig., 37, 291 (1998).
- 21) K. Sakamoto, T. Kato, T. Kawaguchi, E. Ohno-Okumura, T.
- Urano, T. Yamaoka, S. Suzuki, M. J. Cook: J. Photochem.
- Photobiol. A:Chem., 153, 245 (2002).
- 22) K. Sakamoto, E. Ohno-Okumura, T. Kato, T. Kawaguchi, M. J.
- Cook: J. Porphyrins Phthalocyanines, 7, 83 (2003).
- 23) H. H. Willard, L. L. Merritt Jr., J. A. Dean, F. A. Settle Jr., "Instrumental Methods of Analysis, 7th ed.", p.197-222, Wadsworth, Belmont (1988).