分子集合性生体物質の分子会合・分解性の分光学的解析

長谷川 健(応用分子化学科)

1. はじめに

生命工学の要素技術のひとつとして,薄膜 の構造解析があげられる.生命現象は溶液中 での化学反応や輸送も重要だが,界面での分 子認識や物質輸送が鍵を握ることが多い.生 命体で界面といえば,細胞やオルガネラの外 壁を構成する薄膜が重要で,多くの場合脂質 二重層膜を基本とした非共有結合性分子集合 系である.

この分子集合系という概念は特に重要であ る.生体薄膜の流動モザイクモデルは,非共 有結合性の分子集合系として実現できている. 時間平均的に流動を無視して見たとき,重要 なのは分子が一定の配向を示すことである. すなわち,分子はランダムに並んでいるので はなく,ある程度の規則性を持って並んでい る.結晶ほど整然とはしていないが,水素結 合や疎水性相互作用などの分子間力によって, 分子配向が引き起こされ,薄膜の機能発現に 直結している.つまり,薄膜の分子配向を正 確にとらえることは,生物工学の重要な一歩 といえる.

今年度は、生命工学に欠くことのできない ガラス基板上での薄膜構造解析技術の開発を 行った.意外なことに、ガラス基板上での単 分子薄膜構造解析はこれまで例がなかった. これは、繰返し周期のない単分子膜では X 線 解説法が使えず、一方、ガラスは赤外分光法 にとって強い吸収と強烈な干渉縞が解析の障 害となるからである.これを解決することは、 DNA チップなどのガラスベースの分析技術 にとってきわめて重要である.

2. 赤外分光法による薄膜構造解析

分子配向を解析するのに,赤外分光法は強 力な道具である.赤外スペクトルには,官能 基単位でグループ振動が現れ,これは振動の 方向(振動遷移モーメント)が赤外線の電場 振動の方向と一致したときに最大の吸収とな って現れ,互いに直交するときはスペクトル に現れない.1

この性質を使うと、赤外透明基板に載せた 薄膜に赤外線を垂直に入射させたとき(図 la)、赤外線がもつ電場振動は光の進行方向 に常に垂直(つまり膜面に平行)なので、膜 中のグループ振動のうち、膜面に平行なもの だけがスペクトルに現れることがわかる.こ の性質を、透過分光法の表面選択律¹という.

図 1 赤外透過および RA スペクトル測定の 概念図

一方,薄膜を金属面上に作製し,大きな入 射角(膜法線方向から測る)で赤外線を入射 し,反射スペクトルを測定する方法を,反射 吸収(RA)法¹という(図1b). RA法では, 反射面に垂直な電場が面近傍に特異的に発生 するため,膜中のグループ振動のうち,膜面 に垂直なものばかりがスペクトルに現れる. これを赤外 RA 法の表面選択律という.

このように,透過法と RA 法の表面選択律 が互いに相補的であることから,二つのスペ クトルを得られれば,官能基単位で分子の配 向をとらえることができるようになる.例と してステアリン酸カドミウム塩単分子膜を 9 層積んだ膜 (Langmuir-Blodgett (LB) 膜 ^{2,3})
を,実際に赤外透過および RA 法で測定した
結果²を,図2に示す.

これは、基板に対してほぼ垂直に立って配 向しているステアリン酸金属塩分子を想定す ると理解しやすい.この場合、メチレン基 (CH2)の対称伸縮振動や逆対称伸縮振動バ ンド(2850および2917 cm⁻¹)は、いずれも 膜面にほぼ平行なグループ振動となる.この ため、これらのバンドは、透過スペクトルに 非常に強く現れている一方で、RA スペクト ルには非常に弱く現れている.

図 2 ステアリン酸カドミウム塩 9 層 LB 膜の赤外透過(下)および RA(上)スペクトル. 基板は各々CaF2および銀蒸着ガラス基板

逆に, COO⁻対称伸縮振動 (ca. 1430 cm⁻¹) は RA スペクトルに非常に強く現れ, 透過ス ペクトルではほとんど見えない. これは, こ の官能基のグループ振動が膜面に垂直配向し ていることを示し, 実際の分子モデルともよ く合う.

このように,透過・RA 法の組み合わせ測定 は分子配向を如実に反映した結果を与えるた め大変便利だが,異なる二種類の基板(透明 基板および金属基板)の上に '同一の'薄膜 を作製しなくてはならない点が問題である. 基板の表面エネルギーは誘電体と金属とでは 大きく異なるため、単分子膜が基板の違いに 大きな影響を受け、同一の薄膜を比較してい ることにはならない場合がままあるからであ る.

3. 赤外多角入射分解分光法

これらの分析化学的な問題を解決するため, まったく新しい光学計測の概念を提案した.³ これは,多角入射分解分光法(MAIRS)と名 づけたもので,図3に示すような特殊な概念 に基づいている.

図3 斜め入射測定と透過光強度の概念図

薄膜に入射した非偏光は、基板や薄膜内部 で多重反射を繰り返した後、一部が検出器に 届く.このときの光の強度を s_{obs} と書くこと にする.つまり、 $s_{obs} \epsilon_{S_{IP}}$ および s_{OP} と理論 的に関連付けることが必要である.

これを厳密な従来式の光学理論にのっとっ て記述するのは非常に難しい.仮想光に関す る反射・透過理論が無いことも一因だが,そ れ以前に,薄膜や基板の光学定数を波長ごと に把握しなければ,厳密な記述はできないか らである.つまり,既存の理論的考察では早 くも限界が見えてしまうことになる.

この状況を一気に打開するのが計量化学の 分野でもっとも基本的な式¹である,次の形 式の式である.

 $\mathbf{A} = \mathbf{C}\mathbf{K} + \mathbf{U}_{d}$

(1)

A は測定したスペクトルを束ねた行列, C は濃度混合比を全サンプルについて記述した 行列,Kは純成分スペクトルをまとめた行列, U_d はCで説明できなかったAの残差をまと めたものである.この式は,Lambert-Beer 則を、行列を使って多成分・多波長系に拡張 したものと理解することのできるもので、A には通常、複数の吸光度スペクトルが入る. ひとつの吸光度スペクトルaは、試料とバッ クグラウンドのシングルビームスペクトル (s_sおよびs_b)から次式に従って変換して得 られる.

 $\mathbf{a} = -\log_{10}(\mathbf{s}_{s}/\mathbf{s}_{b})$ (2) ただし、ベクトル $\mathbf{s}_{s} \ge \mathbf{s}_{b}$ の割り算は、ベクト ルの各成分どうしの(各波長での)割り算と いう意味である.これを複数のサンプルにつ いてまとめたものが**A**である.

この式は、classical least squares (CLS)回 帰式と呼ばれ、純成分スペクトル K が濃度 C を重みとして線形結合され、吸光度スペクト ルAをモデル化している点に特徴がある.す なわち、吸光度が濃度に比例するという線形 性と、吸光度スペクトルの加算性の両方を示 す重要な基礎式である.

測定したスペクトルには、ノイズなどの雑 多な情報も混ざっているが、これらは試料濃 度 C とは無関係な量なので、線形結合では説 明できない量であるといえる.このため、こ れらを非線形的な量ということもある.この 非線形的な量は、通常、U_d項に捨ててしまう.

CLS 回帰式の大きなメリットは、非線形的 な量が A に含まれていても、U_d 項に捨てて しまうため、C に線形的に応答する情報 K だ けを相手にすることができる、という点であ る.これは実際には、(3)式のような計算を 行うことで、A から線形成分を'引き抜く' という概念で実現する.

 $\mathbf{K} = \left(\mathbf{C}^{\mathrm{T}}\mathbf{C}\right)^{-1}\mathbf{C}^{\mathrm{T}}\mathbf{A}$ (3)

ここで, 肩つきの T や-1 は, それぞれ転置 行列および逆行列を表す.(3)式を計算するこ とで, A から C に線形応答する成分だけを, K として引き抜ける非常に便利な式である.

4. ガラス表面での単分子膜解析

ガラス表面に作製した単分子膜として,最 もよく性質のわかっているステアリン酸カド ミウムを選んだ.ステアリン酸カドミウム単 分子膜は,多くの固体基板上で高度に配向し, 結晶化度もきわめて高いことで知られる.

実際に単分子膜を作製し、赤外透過分光法 で測定したときのスペクトルを図4aに示す.

図 4 ステアリン酸カドミウム塩 1 層 LB 膜 の赤外透過(下)および MAIRS(上) スペクトル. 基板は 0.3 mm 厚のガラ ス基板

おびただしい数の干渉縞が現れていること がわかるが、これはガラスによる強い吸収を 避けて測定するため、基板を薄くしたことに よって現れる光学的な効果で、避けがたいも のである.また、実験を行うたびに干渉縞の 強度も大きく変わり、再現性の良い光学系を 組むことも困難なものである.

それに対し、まったく同一の試料を、われ われが開発した赤外 MAIRS 法で測定した結 果を図 4b に示す. ⁴赤外 MAIRS 法は、面内に 平行(IP)な振動スペクトルと垂直(OP)な 振動スペクトルを同時に与える方法であるが、 今回の実験で重要なのは図 4b に示した IP ス ペクトルのみである.干渉縞がほとんど取り 除かれ、波数位置も明瞭に読み取れるスペク トルが得られている.あとは、このスペクト ルのバンド強度の定量的な精度を確かめられ れば、MAIRS-IP スペクトルの利用価値が確 定する.

そこで、すでに X線回折法により分子配向

が明らかとなっている累積膜についても測定 し、定量的精度を検討した.

用意したのは同じステアリン酸カドミウム の5層LB膜である.この赤外透過スペクト ルを図5aに示す.

図 5 ステアリン酸カドミウム塩 5 層 LB 膜の赤外透過(下)および MAIRS(上) スペクトル. 基板は 0.3 mm 厚のガラス基板

単分子膜に較べてバンド強度が強くなって いるため、干渉縞が少々目立たなくなってい るが、それでも解析に支障をきたすほど強く 現れている.この試料を、赤外 MAIRS 法で 測定した結果を図 5b に示す.干渉縞がほぼ完 全に取り除かれている.

そこで,光学定数を元にこのバンド強度を 理論的に計算してみた.これには,光学異方 性を取り入れた透過率計算。を行った.委細 は省くが,計算の結果,実測のバンド強度を ほぼ完璧に再現することに成功した.このこ とは,MAIRS-IP スペクトルが,単に干渉縞 を取り除く効果を持っているだけでなく,得 られたスペクトルのバンド強度が極めて精度 の高い,定量的に信頼できるものであること を意味している.

そこで,図4bで得られた単分子膜の結果に ついても同様の計算を行い,実測値との照ら し合わせから,ガラス基板上での分子配向を 見積もった.その結果,炭化水素鎖軸主鎖が 膜法線から約26度傾いていることが始めて 明らかとなった. これは、以前解析した金やゲルマニウム表 面での結果(それぞれ 8 度⁶および 18 度⁶) に較べて有意に大きく、また表面自由エネル ギーの大きさを反映する結果となった.

このように、ガラス基板上で有機超薄膜の 構造解析を行う道をはじめて開くことに成功 した.

このほか,水素終端化処理したシリコン基 板表面のキャラクタリゼーションや,プリオ ン蛋白模擬化合物の凝集状態の解析などの関 連する研究⁷⁻¹¹も行い,生命工学の基礎的な 研究を行った.

- 5 参考文献
- 長谷川健「スペクトル定量分析」講談社 サイエンティフィク(2005), pp.1-170.
- J. Umemura, "Handbook of Vibrational Spectroscopy" Chalmers, J. M.; Griffiths, P. R. Eds., Wiley: Chichester, 2002; Vol. 3, p. 982.
- T. Hasegawa J. Phys. Chem. B 106, 4112 (2002).
- T. Hasegawa, Y. Nakano, Y. Ishii Anal. Chem. 78, 1739 (2006).
- 5) T. Hasegawa, S. Takeda, A. Kawaguchi, J. Umemura, *Langmuir* **11**, 1236 (1995).
- T. Hasegawa, J. Nishijo, J. Umemura, W. Theiβ J. Phys. Chem. B, 105, 1117 (2001).
- T. Hasegawa, J. Umemura, N. Yamada J. Mol. Struct. 735/736, 63 (2005).
- T. Hasegawa, H. Kakuda, N. Yamada J. Phys. Chem. B 109, 4783 (2005).
- T. Hasegawa, D. Moriya, H. Kakuda, C. Li, J. Orbulescu, R. M. Leblanc *J. Phys. Chem. B* 109, 12856 (2005).
- H. Kakuda, T. Hasegawa; T. Tanaka, K. Tanaka, M. Shionoya *Chem. Phys. Lett.* 415, 172 (2005).
- T. Hasegawa Appl. Spectrosc. 78, 1739 (2006).