1. 緒言

耐震設計が見直された昭和 53 年以前に建てられ た戸建住宅の基礎には鉄筋が入っていない無筋コ ンクリート基礎を使用している場合が多い.建築物 の基礎は建物と地面の間にあり,建物の荷重を地盤 に伝える重要な構造部材である.無筋コンクリート を基礎に使用していると,大地震等で倒壊する危険 があるため,基礎には高い強度やエネルギ吸収率が 必要となる.

コンクリートは圧縮強度と比較して引張強度は 充分な値でなく,圧縮強度の1/10程度しかない¹⁾. そこで,無筋で作ったコンクリート基礎に引張強度 の優れている炭素繊維強化プラスチック(以下 CFRPと記す)を用いて,住宅が建ったままで補強す ることで,引張強度にも優れた CFRP 補強経年無筋 コンクリートを開発し,無筋コンクリート基礎の戸 建住宅の住民に地震時に安全・安心を与えることを 本研究では目指した.

ここでは、コンクリート単体の機械的特性を調べ るために圧縮試験を行った.次に、CFRP 補強コン クリートはスリットを入れた無筋のコンクリート に CFRP 帯板を入れ、エポキシ樹脂を注入すること で CFRP をコンクリートに接着させて作成し、4 点 曲げ試験することにより CFRP 補強無筋コンクリ ートの曲げ特性を調べた.また、有限要素法を用い て解析を行い、CFRP 補強のメカニズムについて言 及する.

2. 圧縮試験

コンクリートの機械的特性を調べるために圧縮試験を行った. 試験体は高さ 200[mm], 直径100[mm]の円柱であり, 合計6本試験した. コン

邊 吾一(日大生産工・教授) 小澤 延行((株)ヴァンテック・開発部長)

クリートの調合を Table 1 に示し、圧縮試験の結果の一例を Fig.1 に、すべての結果を Table 2 に示す.

Table1 コンクリート調合

Fig1. 圧縮試験の応力-ひずみ線図

Table2 コンクリート圧縮試験

	最大応力 [MPa]	最大ひずみ [%]	ヤング率 [GPa]
No.1	20.31	0.134	22.34
No.2	20.95	0.192	18.02
No.3	24.54	0.214	21.10
No.4	20.33	0.260	17.03
No.5	25.11	0.198	21.88
No.6	25.41	0.218	20.93
平均	22.78	0.203	20.21

6本の平均として, 圧縮強度は22.78[MPa], 最大 ひずみは0.203[%]であり, 圧縮弾性率は20.21[GPa] であった. ただし, 弾性率は最大荷重の1/3に相当 する応力と, 原点を結ぶ線分の勾配として算出した.

Study on Base Concretes of Old Houses Reinforced with Unidirectional CFRP

3. 4 点曲げ試験

3.1 試験体

CFRP 補強コンクリートは Fig.2 に示すように無 筋コンクリートにスリットを入れ、そこに CFRP 帯 板を挿入後、エポキシ樹脂をポンプで注入して CFRP を接着・接合した試験体である.

使用したエポキシ樹脂系接着剤はJISA 6024「建築補修用注入エポキシ樹脂」に準じ.主剤をビスフ エノールA型エポキシ樹脂,硬化剤を変性脂環式ポ リアミンとしたエポキシ樹脂系接着剤である.また, CFRPの樹脂は主剤をビスフェノールA型エポキシ 樹脂,硬化剤を芳香族ポリアミンとしたエポキシ樹 脂,炭素繊維は PAN (ポリアクリロニトリル)系高 強度炭素繊維をそれぞれ用い,引抜成形にて製作し た CFRP 帯板である.

試験体の CFRP 挿入位置は、Fig.3 に示すよう、

「下側補強」,「中心片側補強」,「上下補強」,「中心 両側補強」とし,さらに無筋コンクリートも用意し た.

CFRP 補強コンクリートの各寸法は,長さ 1400[mm],幅 120[mm],高さ 300[mm],スリッ トの幅 30[mm],スリットの高さ 3[mm]とし,スリ ットを入れる位置は下側補強と上下補強は下端も しくは上端から 60[mm]とし,中心補強の場合はコ ンクリート高さの中心である 150[mm]の位置にい れた.また CFRP 帯板の寸法は厚さ 1.2[mm],幅 25[mm]とする.また,CFRP 帯板の物性値を Table 3 に示す.

3.2 試験条件

Fig.4 に示すように4点曲げ試験を行い,試験体 を支点間距離 1000[mm],支持点直径 70[mm]の上 に乗せ,負荷点間距離 333[mm]である冶具を試験体 の上に乗せた.さらに支持点,負荷点にコンクリー トへの食い込みを防ぐために長さ 100[mm]の平板 を付けた.試験体長さの中心で底にダイヤルゲージ を置き,たわみを測定し,試験機のロードセルによ り荷重を測定した.また,Fig.5 に示すように,ひ ずみゲージを試験体の底と CFRP が補強されてい

Fig.2 CFRP 補強コンクリート

Fig.3 試験体断面

Fig.4 試験概要

F _L	E _L	F _T	E _T	F _{LT}	G _{LT}	ν _{LT}	ε _ι
[MPa]	[GPa]	[MPa]	[GPa]	[MPa]	[GPa]	[MPa]	[%]
2697	150	75	10.4	109	4.6	0.32	

る

面と反対側の側面(両側補強の場合は片面)に貼り 付けた.

3.3 試験結果

結果の一例として, Fig.6, Fig.7 に無筋コンクリ ートと下側補強したコンクリートの荷重-変位線 図を示す.

無筋コンクリートはたわみに比例して荷重が増 えている.そして、0.12[mm],40.9[kN]の時にで引 張応力が働く下面からクラックが入り,瞬時に曲げ 破壊した.一方,下側補強したコンクリートは無筋 コンクリートが破壊した 38.0[kN]付近にてクラッ クは入るものの,その後も荷重を受け持ち,最終的 にはたわみは無筋の場合に比べて荷重は3倍,たわ みは20倍近く大きくなり、119.2[kN],22.05[mm] で破壊した.破壊様相の一例をFig.8 に示す.

無筋コンクリート同様下面からクラックが入る ものの、クラックが斜めに入っていることから引張 破壊の他にせん断破壊もしている.また、無筋コン クリートはクラックが下面から入ると瞬時に上面 まで達し、はり全体の破壊に至るが、CFRPで補強 されているコンクリートは徐々に下側からクラッ クが進展していき、破壊に至るのは、上面にて圧縮 破壊し、荷重を受け持たなくなるときであった.

さらに「中心片側補強」の破壊様相を Fig. 9 に示 す.中心片側補強に限り, CFRP が補強されていな い側面(長さと幅からなる面)に折れ曲がる変形を 起こしていた.

試験は各試験体について2体ずつ行ったが、その すべての結果を比較してTable 4に示す.補強され ている試験体はほぼ同様な荷重-変位線図を画い たが、「中心片側補強」は他と比べ変位は同等だが、 受け持つ荷重が低かった.要因として、上記のよう に中心片側補強のみが、面外に変形していることが 挙げられる.

さらに、荷重-変位線図の面積を求めることにより、試験体が吸収したひずみエネルギを算出した結果を Table 5 に示す.

結果を比較してみると「下側補強」と「上下補

Table 4 曲げ試験の結果の比較

	No.	荷重 [kN]	応力 [MPa]	最大荷重時変位 [mm]	曲げ強さ [N/mm ³]
	1	44.5	4.12	0.13	3.10
煮肋	2	40.9	3.79	0.12	2.84
	1	119.2	1104	22.05	8.28
F 199 FHB 258.	2	105.4	9.76	22.06	7.32
1. 77 48 34	1	119.2	11.04	20.61	8.28
上 1111593	2	125.0	11.57	17.86	8.68
abs 2.14-00150246	1	47.9	4.44	15.00	3.33
平心方 调 相独	2	60.4	5.59	17.70	4.19
ah 2 75 005634	1	83.3	7.69	12.95	5.78
甲心阿側補強	0	100.0	11.00	10.07	0.50

Fig.7 下側補強コンクリート荷重-変位線図

Fig.8 下側補強無筋コンクリートの破壊様相

Fig.9 中心片側補強コンクリートの破壊様相-

強」が他と比較して高い値を示している.以上より, 中立軸から離れた位置にあり,引張応力が働く下面 に CFRP が補強されているコンクリートが優れて いることが示された.

4. 有限要素法による解析

4.1 FEM 解析モデル

解析には汎用有限要素法プログラム「ANSYS 11.0」を使用した. 試験体は全てソリッド要素とし、 コンクリート部は 3 次元コンクリートソリッド (SOLID65), CFRP 部は 3 次元積層構造ソリッド (SOLID185)を用いた. モデルは 1/2 対称拘束モデ ルとし、破壊基準はコンクリート, CFRP 共に最大 応力説を用いた. 使用した材料物性値は Table 3 と Table 6 に示す.

4.2 FEM 解析モデルの有用性

上の条件より, 無筋コンクリート変位一荷重線図 の比較を Fig.11 に示す. 無筋コンクリートの強度 に関しては, 2 体の曲げ強度の実験値の平均値と FEM の値は、ほぼ一致している. 最大たわみは 実験値が FEM 値よりも大きくなる. この理由と しては, FEM に用いたコンクリートの圧縮弾性 率は,本実験で得た Table2 の平均値を用いたが, 引張り側にも同じの値用い、圧縮の大きなヤング率 を引張り側に使用したためと考えられる。

5. 結言

CFRP 帯板で補強されたコンクリートの曲げ試 験を行うことにより,無筋コンクリートと下側補強 の試験体を比較すると荷重は約2.5倍,変位は約180 倍と大幅な向上が見られた.また,有限要素法を用 いた解析では,無筋コンクリート単体で良い一致が 得られた. また,無筋コンクリートの解析結果を 利用し今後は CFRP 補強コンクリートの解析を検 討していく.

末筆ながら,試験装置の借用と操作法を指導して いただいた櫻田智之教授と師橋憲貴専任講師、試験 での計測とデータの処理をした大学院生齎藤一真 君と4年生中山大輔君に感謝します。

参考文献

1) 村田二郎, 國府勝郎, 越川茂雄, 入門鉄筋コン クリート工学, 技術堂出版, 2004

	No.	吸収エネルギ [J]	単位体積当たりの 吸収エネルギ [kJ/m ³]	無筋1との比較
価效	1	82	0.23	
AHADI -	2	6.1	0.17	
下御坊改	1	1852	51.47	225.8
1°199fill994.	2	1904	52.90	232.1
LTHA	1	1767	49.09	215.4
	2	1483	41.20	180.8
由心性御時代	1	552	15.33	67.3
中心为1则11的94	2	752	20.88	91.6
由心击御城举	1	974	27.04	118.7
中心凹凹即開始	2	1414	39.28	172.3

Table 5 吸収エネルギの比較

Table 6 無筋コンクリートの物性値

弾性率 [GPa]	圧縮強度 [MPa]	引張強度 [MPa]	ポアソン比	せん断伝達係数		
				開いたクラック	閉じたクラック	
20.21	21 22.78 2.28 0.		0.2	0.2	0.6	

Fig.10 FEM 解析モデル

Fig.11 無筋コンクリートの FEM と実験の比較