数値解析を用いたアルミニウム箱形断面材と

スギ製材による合成構造柱の研究

鉄建建設	〇石渡り	康弘	TKアーキテクト	西尾	勇輝
日大生産工	小松	博	日大生産工	鎌田	貴久

1. はじめに

筆者らは、構造材料として木材の力学的性質を 無駄なく活用し、現状以上に木材の利用を促進す るなどの目的から、アルミニウム箱形断面材にス ギ製材を挿入した合成構造柱を提案したり。また、 アルミニウムはリサイクル性が高く、スギ製材は 生産時のエネルギー消費が少ないことから、この 合成構造柱は環境負荷の低減へも配慮している。 既往研究1)では、この合成構造柱に対し、純曲げ 実験、曲げせん断実験、短柱圧縮実験、中心圧縮 実験を行い、各単一材柱と比較をすることによっ て合成構造柱の構造特性を明らかにするととも に、Johnson式、Euler式を基に合成構造柱の耐 力評価式を導いた。更に、提案した合成構造柱と 軽量鉄骨の梁を用いた門形架構の水平加力実験 を行い、合成構造柱の架構形式での構造性特性も 明らかにした2。

しかし、この合成構造柱は内部にスギ製材を挿 入するという性質上、実験ではスギ製材の応力分 布の状況が把握できない。また、スギ製材の最大 耐力は実際に破壊実験をしなければ把握できな いため、合成構造柱に挿入した実際のスギ製材の 影響が把握しにくい。このため本研究では、既往 研究¹⁾で行われた純曲げ実験、中心圧縮実験およ び門形架構の水平加力実験に対し、有限要素法に よる数値解析を行い、その整合を図り、実験では 捕捉が困難な内部に挿入されたスギ製材の応力 分布等の細部の検証を行う。

2. 解析概要

2.1 純曲げ実験に対する解析

解析ソフトは、純曲げ実験、中心圧縮実験およ び門形架構実験全て有限要素解析ソフト Marc2017.1.0を用いた。図-1に純曲げ実験の合 成構造柱(以下ALW)の解析モデルおよび解析条 件を示す。モデルの材軸方向をz軸とし、アルミ ニウム箱形断面材(以下AL)は、実験時に用いた断 面寸法100×100×3mmを基に、3mmの厚みを持 たせたシェル要素とし、モデルの断面寸法は板材 の重心位置における97×97mmとした。また、ス ギ製材(以下W)はソリッド要素とし、断面寸法は 実験時と同様に94×94mmとした。そして、AL のモデルにWのモデルを挿入し、接触面を摩擦係 数0の接触体とし、ALWのモデルとした。

Study on Numerical Analysis of Composite Structure Using Aluminum and Wood

Yasuhiro ISHIWATA, Yuki NISHIO, Hiroshi KOMATSU and Takahisa KAMADA

また境界条件は、実験時と同様に片側の支点を x軸回転のみを自由としたピン支承とし、もう片 側をx軸回転およびz方向変位を自由としたロー ラー支承とした。荷重は強制変形を加え、この部 分は剛体とした。

2.2 中心圧縮実験に対する解析

図-2に中心圧縮実験に用いたALWの解析モデ ルおよび解析条件を示す。ALWのモデルは、純 曲げ実験と同様の寸法のシェル要素を用いたAL と、ソリッド要素を用いたWによりモデル化を行 った。なお、モデルの長さ*l*_kは、実験を行ったALW の細長比*λ*=36、55、76、97より、1000、1600、 2200、2800mmとした。

また境界条件は、実験時と同様に両端共にy軸 回転のみを自由としたピン支承とした。荷重は強 制変形を加え、モデル端部は剛体とした。

2.3 門形架構実験に対する解析

図-3に門形架構の解析モデルを示す。門形架構 の水平加力実験に用いたALWは純曲げ、中心圧 縮実験と同様とし、梁材の軽量H形鋼(以下SWH) では、厚み4.5mmと3.2mmのシェル要素を用い、 断面は150×100×3.2×4.5mmとした。ALWの 材軸方向をzとし、柱脚はピン支承を模し、y軸回 転のみ自由とした。加力点は図に示す通り柱頭に x方向に強制変位を加えた。

2.4 材料特性

次に、材料特性を表-1に示す。ALは等方性弾 塑性体とし、降伏応力度のおよびヤング係数Eは、 実験に用いた材料の引張実験の結果を用いた。ポ アソン比vは0.35、応力-ひずみ関係はBi-Linear、 降伏条件はVon Mises、降伏後の接線係数はヤン グ係数Eの1/100とした。また、Wは直交異方性 弾性体とし、一要素の応力が一定の値になると破 壊に至るようにモデル化を行った。

純曲げ実験の解析に用いた破壊時の応力*omax、 tmax*およびヤング係数*E*は参考文献³より、木材の 力学的性質のばらつきを解析結果に反映するた めに平均値と下限値の2つの値を用い、W1~4の4 つのモデル化を行った。ただし、中心圧縮実験お よび門形架構の解析は平均値を用い、W1のみモ デル化を行った。

また、表-1に示す軸方向ヤング係数*Ez*に対する 各方向のヤング係数は*Ex* =*Ey* =*Ez*/25、せん断弾 性係数*G*は*Gxy*=*Gyz*=*Gzx*=*Ez*/15、ポアソン比*v* は*vxy* = *vxz* = *vyz* = *vyx* = 0.016、*vzx* = *vzy* = 0.4 とした⁴⁾。

3. 解析結果および考察

3.1 純曲げ実験に対する解析

図-4に純曲げ実験の荷重-変位関係を示す。初 期剛性はどの解析モデルにおいても実験値とほ ぼ一致した。最大耐力も、ばらつきがみられる が実験値の 0.9~1.1 倍におさまっている。また、 最大耐力後の内部の W の割れによる耐力の低 下まで捕捉できており、数値解析の妥当性が検 証された。次に、Wのヤング係数を平均値とし た ALW1 と下限値とした ALW3、ALW2 と ALW4 をそれぞれ比較すると、δ=20mm 付近の ALW の降伏前まででは剛性の差が僅かしかみ られず、ALWの降伏後にはWのヤング係数の 差による剛性への影響が大きくみられた。これ より、ALWの剛性は、ALWの降伏まではAL のヤング係数による影響が支配的で、ALW の 降伏後は W のヤング係数による影響が支配的 になっている。また、Wの要素の破壊時の応力

に平均値を用いた ALW1 と下限値を用いた ALW2、ALW3 と ALW4 をそれぞれ比較する と、同様の履歴を示し、最大耐力のみに差が生 じた。これより、ALW の最大耐力は W の最大 耐力に依存することが明らかとなった。

表-2 に純曲げ実験の最大耐力および累加耐

図-3 門形架構の解析モデルおよび解析条件

表-1 材料特性

	AL	$\sigma_{ m y}$	Ε	W	$\sigma_{ m max}$	$\tau_{\rm max}$	$E_{ m z}$
ALW1		201	61,000	W1	65	6	7,500
ALW2	AT			W2	50	3	7,500
ALW3	AL			W3	65	6	5,500
ALW4				W4	50	3	5,500

 σ_{y} :降伏応力度[N/mm²], E, E_z :ヤング係数[N/mm²] $\sigma_{max}:最大応力度[N/mm²], \tau_{max}:最大せん断応力度[N/mm²]$

図-4 純曲げ実験の荷重-変位関係 表-2 純曲げ実験の最大耐力および累加耐力比

	角	解析値(kN)	累加耐力	累加耐力比	
	ALW	AL	W	(kN)		
	$P_{\rm max}$	P_{maxAL}	P_{maxW}	D	P_{\max}	
				I maxAL+W	$P_{\rm maxAL+W}$	
ALW1	50.4	26.3	21.1	47.4	1.06	
ALW2	46.8		15.0	41.3	1.13	
ALW3	50.0		21.1	47.4	1.05	
ALW4	45.4		14.7	41.0	1.11	

力比を示す。AL および W の単一柱にも同様に 数値解析を行い、最大耐力を示している。ALW の解析値を、AL および W の解析値の単純累加 耐力で除した累加耐力比に着目すると、Wの破 壊時の応力に平均値を用いた ALW1 および ALW3 に対し、下限値を用いた ALW2 および ALW4 が高い値を示している。これより、木材 の最大耐力のばらつきを合成構造とすることに より抑制できていることが明らかとなった。

図-5(a)(b)に ALW1 の解析結果の応力分布図 を示す。(a)の ALW の降伏時には、ALW の降 伏と同時に AL が降伏することが明らかとなっ た。しかし、内部のWは破壊には至っていない。 (b)の ALW の最大耐力時には、AL は大部分が 降伏し、内部のWも赤丸で示した部分で破壊に 至っている。このことより、ALWの降伏はAL の降伏に依存し、ALWの最大耐力はWの最大 耐力に依存することが明らかとなった。

3.2 中心圧縮実験に対する解析

図-6(a)~(d)に中心圧縮実験の各細長比におけ る荷重-材軸方向変位関係を示す。どの細長比に おいても、初期剛性は僅かに実験値より高い勾 配を示した。これは解析モデル端部の剛体部分 の影響があったと考えられる。しかし、最大耐 力は実験値を捕捉できる結果となった。

次に、図-7にALWの中心圧縮実-細長比関係 を耐力評価式と共に示す。耐力評価式は参考文 献 1)より、W のヤング係数は参考文献 3)より 7500N/mm²を用い、Wの降伏荷重は圧縮強さ の 27.5N/mm² に断面積を乗じた値とし、その 他の値は実験値とした。耐力評価式と解析結果 を比較すると、どの細長比においても概ね耐力 評価式によって安全側に評価可能な値を示した。

最後に、図-8(a)~(d)に中心圧縮実験の各細長 比における最大耐力時のALと内部のWの応力

分布図を示す。

λ=36では、ALW の最大耐力時に AL が降伏 し、内部のWが赤丸の部分で破壊に至っている ことが分かる。*λ*=55、76、97 では、ALW の最 大耐力時にALは降伏するものの、内部のWは 破壊に至らず、後に破壊に至ることが分かった。 これより、 λ =36と λ =55の間の一定の細長比で、 破壊性状に変化があると考えられ、その細長比 以上では ALW の最大耐力は、表面の AL が降 伏し局部座屈することによって決まり、これが 起因となって内部のW が破壊に至り、最大耐力 が決定していることが明らかとなった。

(a) 降伏時

図-7 中心圧縮実験の最大耐力-細長比関係

図-6 荷重-材軸方向変位関係

3.3 門形架構実験に対する解析

図-9 に門形架構実験の荷重-変形角関係を示 す。実験値と解析値の初期剛性は一致した。た だし、降伏後は解析値の方が実験値よりも高い 耐力を示した。これはボルトの滑りなどが解析 モデルに反映できていないためだと考えられる。 しかし、R=9/100 以降で ALW 内部の W が割れ ることによる耐力の低下まで再現できており、 十分に実験を捕捉できていると考えられる。

図-10 に最大耐力時の応力分布図の解析結果 を示す。ALW の最大耐力時の応力分布図より SWH の端部および接合部で降伏していること が分かる。また、接合部付近の AL も大部分が 降伏している。これらは、実験時の試験体の破 壊性状と一致しており、応力分布図からも解析 モデルの妥当性が明らかになった。

4. まとめ

既往の実験に対し有限要素法を用いた数値解 析を行った結果、どの解析に関しても実験結果と 整合が取れ、解析の妥当性が検証された。

1)純曲げ実験に対する数値解析の結果、ALW の剛性は、降伏まではALのヤング係数の影響が 支配的で、降伏後はWのヤング係数の影響が支配 的になることが検証された。

2)中心圧縮実験に対する数値解析の結果、初期 剛性は実験値よりも僅かに高い値を示したが、最 大耐力は実験値を捕捉でき、解析モデルおよび解 析条件の妥当性が検証された。

3) 門形架構の水平加力実験に対する解析、門形 架構の降伏は、ALの降伏による影響が大きく、 門形架構の降伏時までは内部のWに応力がほぼ 伝達されず、その後最大耐力の決定はWの破壊に 依存することが明らかとなった。

参考文献

- 石渡康弘 ほか:「アルミニウム箱形断面材 と木材による合成構造柱に関する実験的研 究」,日本建築学会構造系論文集,2018.4, pp647-657.
- 2) 西尾勇輝 ほか:「アルミニウム箱形断面材 と木材による合成構造柱に関する実験的研 究-地震荷重を想定した架構の繰り返し載荷 実験-」,日本大学生産工学部第51回学術講 演会講演概要,2018-12-1,pp722-725
- 村田誠四郎 編:「木材工業ハンドブック」, 丸善株式会社, 2004.3, pp136, 194-195
- 4) 千田知弘 ほか:「スギ材のせん断破壊標準 試験法の提案とせん断強度の推定(第1報)木 材を補剛材として用いたスギ積層材の有限 要素解析とせん断破壊試験」,日本木材学会 木材学会誌, Vol.58(5), 2012.9, pp260-270

(b) $\lambda = 55$

(c) $\lambda = 76$

(d) $\lambda = 97$

図-9 門形架構実験の荷重-変形角関係

図-10 門形架構実験の最大耐力時の応力分布図