日大生産工(学部)

○今井皓己 日大生産工

日大生産工 藤本利昭 日大生産工(院) 三浦智美

1. まえがき

コンクリート充填鋼管 (CFT: Concrete Filled Steel Tube, 以下CFTと略称)構造とは, 鋼管内部にコンクリートを充填して用いる構 造部材であり,主に柱部材として円形・正方形 断面が使用されている¹⁾。

一方でCFT柱が適用される建物を見てみる と,近年では,特に平面的にX方向,Y方向と もに均等な建物は少なく,鉄筋コンクリート構 造のように柱断面を長方形とすれば,より合理 的かつ自由な設計をすることが可能である。こ れまで長方形CFT柱が適用された事例もある が,構造設計で適用される角形断面柱の設計式 は正方形断面を対象に示されており,適用に当 たっては設計者の適切な判断が必要となる。更 に,その判断材料となる長方形断面柱材に関す る研究は,CFT柱に限らずその基礎となる中空 鋼管の研究も僅かで,実験データも不足してい る。よって,未だ設計式が確立されていないの が現状である。

そこで本研究では地震時における長方形鋼 管柱材の基本性能を把握する目的で曲げ実験 を実施し,更に柱としての構造性能を把握する 目的で一定軸力を作用させた曲げ実験を実施 することとした。

本報告では、これら二種類の実験の概要と、 昨年度実施した曲げ実験^{2),3)}の実験結果につい て報告する。

- 2. 実験概要
- 2.1 曲げ実験
- a) 試験体

試験体には、一般構造用角形鋼管STKR400 を使用した。表1に材料試験結果、表2に試験 体概要を示す。材料試験片は5号試験片とし、 角形鋼管の平板部より切り出して製作した。試 験体形状は、板厚を4.5mm、支点間距離Lは断 面長辺Bの6倍(L=6B=900mm)に統一し、断 面寸法150mm×150mm、150mm×100mm、 150mm×75mmの3種類の鋼管について実験 を行うこととした。また、長方形断面において は強軸となる長辺方向と弱軸となる短辺方向 があり、幅厚比や曲げ方向の違いにより構造性 能が異なると考えられることから, 強軸と弱軸 の2方向について検討することとした。

b) 実験方法

曲げ実験に用いた載荷装置を図1に示す。加 力は、2000kN万能試験機を使用した。実験は 3点曲げとし、試験体両端のエンドプレート部 を支点として、ダイアフラムを模擬した試験体 中央部のプレートより加力した。各種測定は、 試験体側面に取り付けた4つの変位計を用いて たわみ*8*から変形角*R*を測定した。試験体上面、 下面には1軸のひずみゲージを各4本、試験体 側面には3軸のひずみゲージを各2本取り付け、 各部のひずみを測定した。

表 1 材料試験結果一覧

		板厚 <i>t</i> (mm)	降伏強度 σ _y (N/mm²)	引張強度 σ _u (N/mm²)	ヤング係数 <i>E</i> (kN/mm²)	伸び率 <i>ε</i> (%)
E	150×150	4.22	405.3	489.7		32.6
	$150{\times}100{\rm s}$	4.94	417.9	469.7		30.8
	$150 \times 100 \mathrm{w}$	4.24	417.2	405.7	205	50.8
	$150 \times 75s$	4.16	414.9	191 9		91.5
Γ	$150 \times 75 w$	4.10	414.0	404.2		01.0

表 2 試験体概要

		断面寸法		+ 노태미대해#	幅厚比		
	幅	せい	板厚	又 只 同 起 離	B/t	D/t	
	B(mm)	D(mm)	<i>t</i> (mm)	L(mm)	(長辺)	(短辺)	
150×150	150	150	4.22	900	35.5	35.5	
150×100s 150×100w	150	100	4.24	900	35.4	23.6	
150×75s 150×75w	150	75	4.16	900	31.6	18.0	

Study on Bending Performance of Rectangular Box-Section Members

Koki IMAI, Toshiaki FUJIMOTO and Tomomi MIURA

1 - 34

2.2 一定軸力下の曲げ実験

a) 試験体

ー定軸力下の曲げ実験に用いる試験体は, 2.1節に示した曲げ実験と同一の角形鋼管を用 いて製作しており,使用材料は表1に示すとお りである。また試験体変数および試験体形状に 関しても曲げ実験と同一である。

b) 実験方法

実験は軸力載荷用のフレームを5000kN万 能試験機に組み込み行うこととした。加力は軸 力載荷用のフレームに取り付けた500kNジャ ッキにより試験体に所定の軸力を作用させ,軸 力を一定に保った状態で5000kN万能試験機 によりせん断力及び曲げモーメントを作用さ せることとした。

曲げ実験の実験結果

3.1 実験結果概要

曲げ実験の結果の一覧を表3に示す。表中の 最大曲げモーメントの実験値 eM_u は、実験で得 られた最大荷重 eP_u を用いて(1)式により求めた。 変形角の実験値 R_{max} は、試験体に設置した変位 計から得られた値を左右で比較し大きい方の たわみ δ を支点間距離Lの1/2で除した値を用い た。

また計算値*cMu*, *cPu*は各試験体の全塑性モー メントおよび全塑性モーメント時の荷重であ り, *Ry*は全塑性モーメント時の変形角を表して いる。それぞれの計算式を(2)~(3)式に示す。

$_{c}M_{u} = \frac{_{c}P_{u} \cdot L}{4} = Z_{p} \cdot \sigma_{y} \cdot \cdots$	(2)
$R_{y} = \frac{_{c}M_{u} \cdot L}{6EI} \dots \dots$	(3)

ここで, *Z*_pは試験体の塑性断面係数, *I*は断 面二次モーメントである。

表3より,耐力比*ePu/cPu*は1.08~1.31であり, 試験体形状・曲げ方向に関わらず,全ての試験 体で実験より得られた曲げ耐力が計算値を上 回っていることがわかる。

更に, 強軸曲げと弱軸曲げの曲げ耐力比を比 較すると, 強軸曲げの方が大きく上回っている ことがわかる。一方,正方形断面は強軸曲げよ りは小さい値となったが,弱軸曲げよりは大き な値となっている。

3.2 荷重-たわみ関係

図2,図3に荷重-たわみ関係を示す。図の縦 軸は試験機による鉛直荷重 $_{e}P$,横軸はたわみ $_{e}\delta$ を示しており,たわみの実験値には4ヶ所に設 置した変位計より得られたたわみの平均値を 用いている。

強軸曲げ試験体において,最大荷重時のたわ みを比較すると,短辺の幅厚比が小さいほど大 きくなり,最大荷重以降の耐力低下も僅かであ った。

一方,弱軸曲げ試験体においては,短辺の幅 厚比の違いによる顕著な差異はみられなかっ たものの,最大荷重以降の耐力低下は短辺の幅 厚比が小さいほど僅かであった。

同一断面で曲げ方向が異なる試験体の最大 荷重時のたわみを比較すると,弱軸曲げより強 軸曲げ試験体の方が大きな値を示しており,曲 げ方向による差異は明確である。

図3荷重-たわみ関係(弱軸曲げ)

表3曲げ実験結果一覧

			断面二次	最大荷重		最大曲げモーメント			変形角			
		曲げ方向	モーメント	計算値	実験値	D / D	計算値	実験値	16 / 16	計算値	実験値	D (D
			$I(\times 10^{3} \text{mm}^{4})$	$_{c}P_{u}(kN)$	$_{e}P_{u}(kN)$	$_{e}P_{u}/_{c}P_{u}$	$_{c}M_{u}(\mathrm{kN}\cdot\mathrm{m})$	$_{e}M_{u}(\mathrm{kN}\cdot\mathrm{m})$	$_{e}M_{u}/_{c}M_{u}$	$R_{v}(\%)$	$R_{max}(\%)$	K_{max}/K_y
	150×150	-	8684	236	278	1.18	53.2	62.5	1.18	0.47	1.60	3.40
	$150 \times 100 s$	強軸	6253	187	235	1.26	42.1	52.8	1.26	0.49	2.21	4.51
	150×100w	弱軸	3348	142	159	1.12	31.9	35.7	1.12	0.70	1.56	2.23
	$150 \times 75s$	強軸	5045	155	203	1.31	34.8	45.6	1.31	0.50	2.97	5.94
	150×75w	弱軸	1713	95	103	1.08	21.5	23.3	1.08	0.92	1.94	2.11

3.3 曲げモーメント-変形角関係

図4,図5に曲げモーメント-変形角関係を示 す。図の縦軸は、実験値eMと計算値 eM_u との比 eM_eM_u とし、横軸は変形角Rとした。

変位計*R*は実験により得られたたわみを支点 間距離の1/2で除した値としている。変位計は4 ヶ所に設置したが,局部座屈発生後は変形が非 対称となるため,左右それぞれの値を平均し, たわみが大きいほうを用いた4。

強軸曲げ試験体では、短辺の幅厚比が小さい ほど最大荷重時の変形角は大きくなり、耐力比 *eMul cMu*についても僅かに大きくなった。

一方, 弱軸曲げ試験体では, 最大荷重時の変 形角については短辺の幅厚比の違いによる差 異はみられなかったが, 短辺の幅厚比が大きい 試験体ほど。*Mul*。*Mu*が僅かに大きくなる傾向が 認められた。

3.4 座屈波長

a) 最終破壊形状

各試験体の最終破壊形状を写真1に示す。最 終破壊形状は、全ての試験体において試験体中 央部に局部座屈がみられた。局部座屈は正方形 断面、強軸曲げにおいては、試験体上部が凸、 側部が凹となった。弱軸曲げ試験体においては、 試験体側部が凸、上部が凹となったことから、 長方形断面では短辺側が膨らみ、長辺側がへこ む傾向があると考えられる。

(a) 150 × 150

(b) 150×100 強軸

(c)150×100 弱軸

(d) 150×75 強軸

(e)150×75 弱軸 **写真1最終破壊形状**

b) 座屈波長

表4に座屈波長の一覧を示す。なお座屈波長 L_b は、図6に示すように、実験終了後の試験体 において、圧縮側となる面の座屈が生じていな い部分の長さ L_1 、 L_2 を、支点間距離Lから差し 引いて求めた。

正方形断面の座屈波長と断面幅との比Lb/B は、0.93であった。長方形断面については、長 辺、短辺それぞれの比を求め、正方形断面の結 果と比較を行った。座屈波長と長辺との比Lb/B では0.53~0.77となり、正方形断面の結果と 比較すると小さな値となった。座屈波長と短辺 との比*Ld* Dでは1.00~1.53となり,正方形断面 の結果より大きく,値にばらつきがあった。

	幅	せい	板厚	座屈波長	L_b/B	L_b/D				
	B(mm)	D(mm)	t(mm)	$L_b(mm)$	(長辺)	(短辺)				
150×150	150	150	4.22	140	0.93	0.93				
$150{\times}100{\rm s}$	150	100	4.24	100	0.67	1.00				
$150 \times 100 w$	150			100	0.67	1.00				
$150 \times 75s$	150	75	4.16	80	0.53	1.07				
$150 \times 75 w$	190		4.10	115	0.77	1.53				

表 4 座屈波長一覧

図 6座屈波長の測定方法

c)終局曲げ耐力と座屈波長の関係

図7に終局曲げ耐力と座屈波長の関係を示す。 縦軸は、実験値eMuと計算値cMuとの比eMulcMu とし、横軸は、座屈波長とした。

すべての試験体において実験値 eM_u が計算 値 eM_u を超える値となった。強軸曲げにおいて は、 $eM_u l_cM_u$ が小さくなるほど座屈波長が大き くなった。

図 7 終局曲げ耐力と座屈波長の関係

d) 座屈波長と幅厚比の関係

図8に座屈波長と幅厚比の関係を示す。図の 横軸は短辺Dを用いた幅厚比D/t,縦軸は座屈 波長Lbとした。 強軸曲げでは、短辺の幅厚比が小さいほど座 屈波長は小さくなったが、弱軸曲げでは、短辺 の幅厚比の違いによる座屈波長の変化はみら れなかった。

4. まとめ

昨年度実施された曲げ実験から得られた知 見を以下に示す。

- ・正方形断面において、曲げ耐力比は強軸曲げより小さな値となるが、弱軸曲げよりは大きな値となる。
- ・ 強軸曲げにおいては、最大荷重時の変形角 は、短辺の幅厚比が小さいほど大きくなる。
- ・最大荷重時の変形角は、同一断面の場合、弱 軸曲げより強軸曲げの方が大きくなった。
- ・強軸曲げにおける座屈波長は、幅厚比が小さいほど小さくなった。また、 *eMuleMu*が小さいほど座屈波長は大きくなった。

今後,一定軸力下の曲げ実験を行い,曲げ実 験との比較考察を行っていく。

参考文献

- 松井千秋:コンクリート充填鋼管構造 CFT構造の性能と設計,株式会社オーム社 pp.1-17
- 瀬川良祐,中島瑞希,三浦智美,藤本利昭: 角形鋼管の曲げ圧縮性状に関する実験的 研究,日本大学生産工学部建築工学科卒業 論文概要集,pp.17-18 2019.3
- 三浦智美,藤本利昭:長方形鋼管の曲げ圧 縮性状に関する実験的研究,日本建築学会 大会学術講演梗概集, pp.1327-1328 2019.9
- 加藤勉,秋山宏,北沢進:局部座屈を伴う 箱型断面部材の変形,日本建築学会論文報 告集,pp.71-76 1978.6