アルミニウム平板とアルミニウム束線の超音波接合に関する基礎研究

-単線材あるいは2本束線材と平板の超音波接合-

日大生産工(院) 〇石井 翔太 日大生産工 前田 将克 ユウアイ電子工業(株) 内田 裕之 日本軽金属(株) 塩田 正彦

1 緒言

近年,パワーエレクトロニクスは電力の高効 率化実現のためのキーテクノロジーとして注 目されており輸送機器等にも用いられている¹⁾. 輸送機器等の電動化に伴ってパワーエレクト ロニクスデバイスの適用範囲が拡大しており 性能に関する要求が増加している.性能要求の 一つに大電流化がある.大電流化達成のために 単線から束線材・撚線材に配線材を置換するこ とで大電流化を図ろうとしている.

一方で、パワーエレクトロニクスデバイスの 配線接合は超音波接合による接続が主流となっている²⁾. 超音波接合に用いられる線材は単 線材のみが現状で、研究報告においても単線材 の超音波接合に関するものは多くあるが、東線 材・撚線材に関するものは少ない.

本研究では、アルミニウム単線材とアルミニ ウム平板あるいはアルミニウム単線材同士の 超音波接合を行い、接合条件が線材の変形挙動 に及ぼす影響について比較・検討を行った.

2供試材および実験方法

線材には直径0.3mmの配線用アルミニウム 合金線材,平板材には厚さ0.6mmの接続端子 用アルミニウム合金板材をそれぞれ用いた.

接合は先端が長さ0.3mm,幅1.4mmの平面 形状を有する超硬合金製ウェッジツールを装 着した60kHz超音波接合装置を用いた.線材と 平板あるいは線材同士の接合は予備実験より 選定したFig.1に示す接合シーケンス及び Table1に示す接合条件で接合を行った.荷重 印加時に発生する振動を減衰させるため,荷重 到達時間を0.1s,荷重印加完了後に0.1s設静置 する接合シーケンスとした.

接合中はツール上方からレーザー変位計(サ ンプリング周期 50kHz)によるツールの押込 量の計測を行い,線材の変形量を測定した.得 られた継手は線材を取り除き接合面の面積の 計測及び接合面に対して垂直な面の巨視的組

bonding conditions.

Table1 Ultrasonic bonding conditions.

Parameters	Symbo	ol (unit)	Value / Range
Frequency	F	(kHz)	60
Ultrasonic power	P	(W)	2.0 ~ 5.0
Bonding load	F	(N)	2.0 ~ 4.0
Bonding time	t	(s)	0.2

Fundamental study on ultrasonic bonding of aluminum flat plate and aluminum bundle wire — Ultrasonic bonding of single wire or double wire bundle and flat plate —

Shota Ishii, Masakatsu Maeda, Hiroyuki Uchida and Masahiko Shioda

織を光学顕微鏡で観察し, 接合条件による変化 を調べた.

3 実験結果および考察

Fig.2に線材と板材の超音波接合において超 音波出力Pを3.0W一定とし、印加荷重Fを変化 させたときのツールの押込量を示す.荷重印加 を開始すると、ツール押込量が増加しているこ とがわかる. ツールは超硬合金製であることか らツール押込量は線材の変形量とみなすこと ができる.ここには示さないが、この時の変形 は荷重のみを印加し除荷したときに線材上に ツール痕が残ることから塑性変形を含んでい る.荷重の増加を停止すると同時にツールの押 込量はほぼ0mm/sまで減少する.一方で超音波 振動印加開始を開始すると,振動方向はツール の押込み方向に対して垂直であるが押込量が 増加を再開する. 超音波振動停止後, 再び荷重 のみが作用した状態となるが超音波振動印加 前のツール押込み量に戻らないことがわかる. このことは静的圧縮荷重によるものとは異な り, 超音波印加過程で生じたツール押込量の増 分は線材の弾性変形を含まない塑性変形のみ が生じたためであると考える.

Fig.3に超音波出力Pを3.0W一定とし、印加 荷重Fを変化させたときの接合面の面積の変 化及び振動方向の摺動痕の長さの関係を示す. 接合面の面積は印加荷重の増加に伴い大きく なる.これは印加荷重の増加に伴ってFig.2に 示したように線材の変形量が増加したことで 線材と板材との接合面に対して垂直な面にお ける接触幅が拡大したことによると考える.す なわち接触幅が大きい状態で摺動が起こった ために接合面積が拡大した.一方で振動方向の 摺動痕の長さは荷重の増加に伴って小さくな った. 超音波振動による振幅は約十数µmであ る.荷重の増加によって振幅は小さくなる.線 材は荷重によって長さ方向に延びることが考 えられる.線材と板材の接触面の線材が荷重に よって伸ばされた状態で超音波振動が印加さ れたため摺動痕が長くなったと考える.

Fig.4に超音波出力Pを3.0W一定とし、印加荷重Fを変化させたときの超音波振動方向に対して垂直な面で切断したときの横断面の巨視的組織観察の結果を示す.印加荷重Fの増加に伴って線材の超音波振動方向に対して垂直方向の変形量が大きくなる.ツールと接する側と板材と接する側を比較するとツールと接する側の方が押しつぶされている幅が大きくなっている.ツールと接する側はツールの先端が平面形状であるため平らに押しつぶされているのがわかる.ツールと接する側ではツールが

超硬合金製であるためツールは変形を生じな い.線材はツールが変形しなかったためツール と接する側はツールの先端形状に変形したも のと考える.一方で、板材と接する側は線材が 板材に押し込まれている.板材と接する側は線材が 板材に押し込まれている.板材と接する側での 変形は板材の材質がアルミニウム合金である ため板材も変形することが考えられる.板材と 接する側の線材の変形は弾性変形成分と塑性 変形成分とで構成されていると考える.荷重印 加時,線材の押しつぶされている幅はツールと 接する側と板材と接する側で同じ幅だったと 考える.荷重除荷後、板材と接する側は弾性変 形成分を含んでいたためもとに戻ったため線 材のツールと接する側と板材と接する側とで 変形の幅に差異が生じたものと考える.

参考文献

1) 例えば, 高橋康夫, 電子情報通信学会論文誌, Vol. J92-C(2009), pp. 581-594.

2)前田将克,北村英樹,高橋康夫,スマートプロ セス学会誌, Vol. 4 (2015), pp. 89-94.

ig.4 Observation of cross-sectional view by bonding wire and plate. (*P*=3W)