低弾性 PCM・PCC を用いて 2 種類の接着剤を塗布した RC 床版の上面補修における耐疲労性の評価

鹿島道路(株) 〇谷口綾 日大生産工 阿部忠 日大生産工(院) 伊藤清志 住友大阪セメント(株) 小堺規行

1. はじめに

本研究は、8 時間の交通規制内で RC 床版を上面補修 する低弾性モルタル (PCM) 或いはビリ材 (9mm) と 6 号砕 石(13mm) を混入した 2 種類の低弾性コンクリート (PCC) を用いて薄層補修した RC 床版の耐疲労性の検証を行う. また、補修法においては筆者ら¹⁾が提案する接着剤塗布 型の補修¹⁾を施し、輪荷重走行疲労実験より耐疲労性の 検証を行い、実用性を評価し、高速道路および地方共団 体が管理する RC 床版の上面薄層補修法の一助としたい.

2. RC床版の使用材料および供試体寸法

2.1 供試体材料

RC 床版供試体のコンクリートには,普通ポルトラン ドセメントと 5mm 以下の砕砂, 5mm ~ 20mm の砕石を 使用し,鉄筋には SD295A-D13 を使用した.供試体を RC-N とする.ここで,コンクリートの圧縮強度および鉄筋の 材料特性値を**表**-1に示す.次に,補修材には従来から 使用されている高弾性 PCM (RC.U-M) および本提案す る超速硬繊維混和型 PCM を用いて高強度ビニロン繊維 を混入した低弾性 PCM (RC.U-F-M) および PCC を用い る.また,この低弾性 PCM に粗骨材としてビリ材ある いは 6 号砕石を混入した供試体を,それぞれ RC.U-F-C、 RC.U-F-C2 とする.供試体 RC.U-M の材齢 3 時間の圧縮 強度は 28.2N/mm²,供試体 RC.U-F M は 28.4N/mm² および RC-U-F-C、RC.U-F-C2 はそれぞれ 27.4N/mm², 28.6N/mm² であり,いずれも日々交通解放する 8 時間施工に適した 配合条件となっている.

2.2 供試体寸法および鉄筋配置

RC 床版供試体および補修供試体の寸法は, 1994 年に 改訂された道路橋示方書・同解説²)に準拠し, その 3/5 モ デルとする. ここで, RC 床版供試体の寸法を図-1に示 す. RC 床版供試体の寸法は全長 1,600mm, 支間 1,400mm, 床版厚 150mm, 鉄筋は複鉄筋配置とし,引張側の軸直角 方向および軸方向に D13 を 120mm 間隔で配置した. ま た, 圧縮側には引張鉄筋量の 1/2 を配置した. 次に、補 修供試体の寸法は, RC 床版と同様であり, 走行範囲 900mm であることから補修範囲は軸方向 1,100 ~ 1,200mm, 軸直角方向 600mm, 深さ 18mm とする.

表-1 RC床版の材料特性値

	コンクリート	鉄筋 (SD295A, D13)			
供試体	圧縮強度	降伏強度	引張強度	ヤング係数	
	(N/mm^2)	(N/mm^2)	(N/mm^2)	(kN/mm ²)	
RC床版	35	377	511	200	

図-1 供試体寸法および補修範囲

3. 輪荷重走行疲労実験方法

3.1 RC床版

輪荷重走行疲労実験は, RC 床版供試体上面に幅 300mm の輪荷重を軸方向に 900mm の範囲を繰り返し走行させ る実験である.また,輪荷重走行疲労実験における荷重 条件は,荷重 100kN で破壊するまで繰り返し走行とする. 各実験において輪荷重走行が 1, 10, 100, 1,000, 5,000 回および 5,000 回以降は 5,000 回走行ごとにたわみを計測 する.

3.2 補修用RC床版

補修用 RC 床版は,輪荷重走行疲労実験を行い,床版 中央のたわみが支間 L の 1/400,すなわち 3.5mm になる まで走行させてひび割れ損傷を与える. その後,実験を 中断し,本提案する補修材で上面補修を施すものとする. 次に,補修後の輪荷重走行疲労試験は,幅 800mm,長さ 1,150 ~ 1,200mm の範囲に枠を設け,水張り試験を実施 する.補修後の疲労試験は,走行不能と判断された場合

Evaluation of Fatigue Resistance in Upper Surface Repair of RC Slabs Applied with Two Kinds of Adhesive Using Low Elasticity PCM · PCC

Aya TANIGUCHI, Tadashi ABE, Kiyoshi ITO and Noriyuki KOZAKAI

		1次補修(湿潤状態)		2次補修(湿潤状態)		補修合計		2次補修までの合計	
供試体 RC床	RC床版	等価走行回 数	補修効果	等価走行回 数	補修効果	等価走行 回数	補修効果	等価走行回 数	補修効果
RC-N	12,336,901	_						12,336,901	
RC.U-M	7,865,598	1,685,974	-	1,621,127	_	3,307,101	-	11,172,699	0.91
RC.U-F-M	7,208,729	2,911,547	1.73	2,671,620	1.65	5,583,167	1.69	12,791,896	1.04
RC.U-F-C	7,208,729	3,414,745	2.03	3,222,674	1.99	6,637,419	2.01	13,846,148	1.12
RC.U-FC-C2	7,208,729	3,678,535	2.18	3,566,483	2.20	7,245,018	2.19	14,453,747	1.17

表--2 等価走行回数

に、実験を終了とする.また、本実験は 2 次補修まで行う.

3.3 走行疲労実験における等価走行回数

本実験は等価走行回数を算出して,耐疲労性を評価する。等価走行回数は式(1)として与えられる. なお,式(1) における基準荷重は,B活荷重100kNの3/5に安全率1.2 を考慮して72kNとする.また,S-N曲線の傾きの逆数 m の絶対値には松井らが提案する12.7を適用する³⁾.

$$N_{eq} = \sum_{i=1}^{n} (P_i / P)^m \times n_i \tag{1}$$

ここで, *Neq*:等価走行回数(回), *Pi*:載荷荷重 (kN), *P*: 基準荷重 (= 72kN), *ni*:実験走行回数 (回), *m*:S-N 曲線の傾きの逆数の絶対値 (= 12.7)

4. 実験結果および考察

4.1 等価走行回数

輪荷重走行疲労実験における等価走行回数を**表-2**に示す.

(1) 供試体RC-N 供試体 RC-N の輪荷重走行疲労試
験における破壊に至るまでの等価走行回数は 12.336×10⁶
回であり、これを基準に考察を行う.

(2)供試体RC.U-M たわみが床版支間 L の 1/400 (3.5mm)に達した時点の等価走行回数は 7.865×10⁶ 回で ある.1 次補修後および 2 次補修後の等価走行回数はそ れぞれ 1.685×10⁶ 回, 1.621×10⁶ 回である.2 次補修までの 合計等価走行回数は 3.307×10⁶ 回,合計等価走行回数は 11.172×10⁶ 回である.2 次までの合計等価走行回数と比較 すると,乾燥状態で試験を行った供試体 RC-N の 90%で あり,湿潤状態においては耐疲労性が低下する結果が得 られた.

(3)供試体RC.U-F-M 低弾性 PCM を用いた供試体の たわみが床版支間 L の 1/400 に達した時点の等価走行回 数は 7.208×10⁶回である.ここで、1 次補修を施し、上面 が劣化した時点の等価走行回数は 2.911×10⁶回、2 次補修 後の等価走行回数は 2.671×10⁶回である.高弾性 PCM 補 修した供試体 RC.U-M のそれぞれ 1.73 倍、1.65 倍である.2 回目の補修までの合計等価走行回数は 5.583×10⁶回であ り、供試体 C.U-M の 1.69 倍である.また、乾燥状態で疲 労試験を行った RC 床版供試体の等価走行回数の 1.04 倍 である. (4) 供試体RC. U-F-C ビリ材を混入した供試体 RC.U-F-C は等価走行回数 7.208×10⁶ 回後に 1 次補修を施 し, 1 次補修後の等価走行回数は 3.414×10⁶ 回である.ま た, 2 次補修後の等価走行回数は 3.222×10⁶ 回である.2 次補修までの合計等価走行回数は 6.637×10⁶ 回である.供 試体 RC.U-M のそれぞれ 2.03 倍、1.99 倍である.2 次補 修までの合計等価走行回数は 2.01 倍である.また供試体 RC-N の 1.12 倍となった.さらに、補修材 U-F-M を用い た供試体に対して、1.19 倍となり、ビリ材を混入した補 修材と同様にビリ材を混入することで耐疲労性が向上す る結果が得られた.

(5)供試体RC. U-F-C2 6 号砕石を混入した供試体 RC.U-F-C2 は、等価走行回数 7.208×10⁶ 回後に 1 次補修し、 再劣化が生じた等価走行回数は 3.678×10⁶ 回である.供試 体 RC.U-M に比べて 2.18 倍, RC.U-F-M および RC.U-F-C のそれぞれ 1.26 倍, 2.18 倍である.ここで,2 次補修を 施し、再々劣化が生じた時点の等価走行回数は 14.453×10⁶ 回であり、上面損傷は小規模であることから凹凸面をデ ィスクサンダーで平滑に補修し、再実験を開始した.破 壊に至った等価走行回数は 17.048×10⁶ 回である.よって,6 号砕石を配合することで耐疲労性が向上する結果となっ た.

4.2 たわみと等価走行回数の関係および損傷状況

たわみと等価走行回数の関係について,供試体 RC-1, 供試体 RC.U-M を図-2(1)に示す.

(1) 供試体RC-N RC 床版供試体 RC-N のたわみが床 版支間 L の 1/400, すなわち 3.5mm に達した時点の等価 走行回数は 6.484×10⁶ 回であり,その後の走行からたわみ の増加がやや大きくなっている.等価走行回数 11.996×10⁶ 回付近からたわみの増加が著しくなり,破壊時のたわみ は 9.02mm である.

(2) 供試体RC.U-M 供試体 RC.U-M のたわみと等価 走行回数の関係は,床版支間 L の 1/400 に達した時点の 等価走行回数は 7.865×10⁶ 回であり,残留たわみは 1.42mm である.1 次補修後のたわみはこの残留値を初期値とし,1 次補修までの等価走行回数の累積は 9.551×10⁶ 回である.

補修後は水張りによる走行実験を行ったことから,補修 後たわみが 2.03mm で界面にはく離や走行面に割れが発 生し,走行不能により,実験を中断した.ここまでの累 積たわみは 3.53mm であり,残留たわみは 1.96mm である. 次に,2 次補修後の等価走行回数の累積は 11.172×10⁶回

であり,たわみは 2.14mm で走行不能となった.この時 点の累積たわみは 4.11mm,残留たわみが 2.64mm である. (3)供試体RC.U-F-M 低弾性 PCM の補修材 U-F-M を 用いた供試体 RC.U-F-M のたわみと等価走行回数の関係 は図-2(1)に示すように、1 走行後のたわみはたわみ 3.52mm,残留たわみは 1.22mm である.1 次補修後のた わみは等価走行回数の累積は 10.613×10⁶回,たわみの累 積は 3.72mm,残留たわみは 2.05mm である.1 次補修後 のたわみは 2.50mm で,路面の凹凸が著しくなり、実験 を中断し、2 次補修を施した.次に、2 次補修後の等価 走行回数の累積は 13.863×10⁶回,たわみの累積が 5.16mm である.2 次補修後のたわみは 3.11mm で走行不能となっ た.残留たわみが 2.92mm である.

(4)供試体RC. U-F-C ビリ材を用いた供試体 RC.U-F-M のたわみと等価走行回数の関係は、1 走行後の たわみは0.90mm である.たわみが床版支間Lの1/400 に 達した時点の等価走行回数は7.208×10⁶ 回であり、この時 点のたわみ 3.52mm、残留たわみは1.22mm である.1 次 補修後のたわみの累積は 3.72mm、残留たわみは 2.05mm である.1 次補修後のたわみは2.50mm で、路面の凹凸が 著しくなり、実験を中断し、2 次補修を施した.次に、2 次補修後の等価走行回数の累積は 13.863×10⁶ 回、たわみ の累積が 5.16mm である.2 次補修後のたわみは3.11mm で走行不能となった.残留たわみが 2.92mm である.

(5)供試体RC. U-F-C2 6 号砕石を用いた供試体 RC.U-F-C2 のたわみと等価走行回数の関係は、1 走行後の たわみは 0.91mm である.たわが床版支間 L の 1/400 に達 した時点の等価走行回数は 7.208×10⁶ 回であり、この時点 のたわみ 3.47mm,残留たわみは 1.26mm である.1 次補 修後のたわみは等価走行回数の累積は 10.887×10⁶ 回、た わみの累積は 3.81mm,残留たわみは 2.21mm である.1 次補修後のたわみは 2.36mm で、路面の凹凸が著しくな り、2 次補修を施した.次に、2 次補修後の等価走行回 数の累積は 14.453×10⁶ 回、たわみの累積が 5.01mm であ る.2 次補修後のたわみは 2.81mm で走行面に 1.0mm ~ 2.0mm 凹凸が見られ、ディスクサンダーで平滑に仕上げ、 継続実験を実施した.破壊時の等価走行回数 17.048×10⁶ 回、たわみの最大値は 9.57mm である.よって、6 号砕石

を混入することで、耐疲労性が大幅に向上する結果となった.

4.3 上面の損傷状況

-79-

補修床版の上面損傷を図ー3に示す.

(1) 供試体RC. U-M 供試体 RC.U-M のたわみが床版 支間 L の 1/400 の時点の上面の損傷は,軽微な損傷であ る.1 次補修後の上面は,水張り試験を行ったことから 走行面はセメント成分の滲出による凹凸が著しい.また,

(1) 建研式引張試験の位置 (2) 建研式引張試験機 図-4 建研式引張試験方法

表-3 建研式引張試験方法による付着強度

供試体	試験位 置	直径 (mm)	断面積 (A) (mm ²)	接着荷重 (P) (kN)	付着強度 (P/A) (N/mm ²)	2回目の等 価走行回数	破断位置
RC.U-M	No.1	99.00	7698	0.0	0.00	1 621 127	界面
	No.2	99.00	7698	0.0	0.00	1,621,127	界面
RC.U-F-M	No.1	99.00	7698	10.2	1.33	2 671 620	界面
	No.2	99.00	7698	15.9	2.07	2,071,020	補修層
RC.U-F-C	No.1	99.00	7698	20.6	2.68	2 222 674	補修層
	No.2	99.00	7698	21.9	2.85	3,222,074	補修層
RC.U-F-C2	No.1	99.00	7698	0.0	0.00	14,453,746	補修層
	No 2	99.00	7698	0.0	0.00	(破壊時)	補修層

補修面全面に割れに伴うひび割れ発生し,界面ははく離が生じている.2次補修後の上面は,走行面の凹凸や割れに伴うひび割れが発生し,さらにはく離が生じている. よって,高弾性 PCM を用いた補修法は割れやはく離が 生じる結果となった。

(2)供試体RC.U-F-M 補修前の上面損傷は,走行面 に軽微な損傷が見られる.1次補修後の上面は,水張り 試験を行ったことから,セメント成分の滲出による走行 面全面に凹凸の発生が著しい.しかし,ひび割れの発生 や界面のはく離は見られない.2次補修後の損傷状況も 上面は水張り試験によるセメント成分の滲出による走行 面の凹凸が著しい.

(3)供試体RC.U-F-C 補修前の損傷状況は、上面は 軽微な損傷である.1次補修後および2次補修後の上面 は、セメント成分の滲出による路面の凹凸が発生するも の供試体 RC.UFC-M に比べて、凹凸範囲は減少している. これは、供試体にビリ材と高強度ビニロン繊維の配合お よび2種類の接着剤を塗布したことから割れやはく離は 見られない.

(4)供試体RC.U-F-C2 補修前の損傷状況は、上面は 軽微な損傷である.1 次補修後の上面は、セメント成分 の滲出による路面の凹凸が発生するが軽微である.2次 補修後は上面に凹凸が見られるが、ディスクサンダーで 補修し、破壊まで走行させた.破壊時の上面損傷は水張 り試験によるセメント成分の滲出による凹凸が著しい.

4.4 建研式引張試験による界面の付着性能

(1) 建研式引張試験 2 次補修終了後に補修界面の 付着性能を確認するために,建研式引張試験を行い,引 張付着強度を計測する.ここで,建研式引張試験および 試験位置を図-4に示す.試験方法は補修面に電動ドリ ルを設置し,直径 100mm で既設 RC 床版の位置まで切り 込みを入れる.次に,コアの上面に接着剤を塗布し,鋼 製治具を圧着し,養生を行う.接着剤が硬化した後,油 圧式接着力試験機を用いて載荷速度 1.0N/cm²/sec で引張 付着強度試験を実施する.

(2) 引張付着強度 建研式引張試験により得られた界面の引張付着強度表-3に示す.

高弾性の補修材 U-M で直接補修した供試体 RC-U-M は、No.1, 2 ともにコア削孔中に界面ではく離した.よ って、引張付着強度は 0.0N/mm² である.一方、供試体 RC.U-F-M の引張付着強度は No.1, No.2 でそれぞれ 1.33N/mm², 2.07N/mm² である.また、ビリ材を混入した 供試体 RC.U-F-C の引張付着強度は No.1, No.2 でそれぞ れ 2.68N/mm², 2.85N/mm² である.次に、6 号砕石を用い た供試体は破壊時まで走行させたこととから、引張付着 強度 0.0N/mm² である.

5. まとめ

- (1) 輪荷重走行疲労試験による等価走行回数においては, 従来の高弾性 PCM を用いた供試体に対して,8時間 施工に用いる低弾性 PCM およびビリ材を混入した低 弾性 PCC においても,それぞれ 1.69 倍,201 倍,6 号砕石を用いた低弾性 PCC は 2.19 倍となり,耐疲労 性が向上する結果が得られた.
- (2) たわみと等価走行回数においても、従来の高弾性 PCM で補修した供試体は 1 次補修後は 2.03mm, 2 次補修後は 2.14mm で、割れよるひび割れと走行面の凹凸に より損傷で終了した. これに対して、供試体 U-F-M は 2.86mm, 2.26mm, 供試体 U-F-C においても 2.52mm, 2.68mm とたわみの増加が抑制されている. さらに、6 号砕石を用いた低弾性 PCC もたわみの増加が抑制されている.
- (3) 建研試験による引張付着強度は、高弾性 PCM を用い た供試体 RC,U-M は、計測箇所 2 箇所ともにコア切 削中に界面ではく離が確認された.これに対して、8 時間施工に用いる低弾性 PCM および低弾性 PCC は、 走行面の引張付着強度は低下するものの引張付着強 度 1.0N/mm²,以上を有している.したがって、接着 剤の効果より、はく離が抑制される結果が得られた.

参考文献

-80 -

- 阿部忠・伊藤清志・大野晃・山下雄史: RC 床版上面 損傷に用いる補修材の提案およびサイクル補修におけ る耐疲労性の評価,構造工学論文集, Vol.60A, pp.1122-1133, 2014.3
- 2) 日本道路協会:道路橋示方書·同解説 Ⅰ, Ⅱ, Ⅲ, 1994
- 3) 松井繁之:道路橋床版 設計・施工と維持管理,森北 出版,2007.10