平板固体酸化物形燃料電池の発電環境変化に対する耐性試験

日大生産工(院) 〇清水 涼矢

1 緒言

現在問題となっている環境問題のひとつに地 球温暖化がある.地球温暖化は化石燃料の使用に よる温室効果ガスの排出が大きな原因と考えら れており, 化石燃料の使用を削減していくことが 地球温暖化の抑制へ繋がると考えられている.化 石燃料の使用を低減する方法として,既存燃焼機 関の効率向上,太陽光・風力・水力などの自然エ ネルギーの利用が挙げられる.また,近年注目さ れている技術として水素を利用する燃料電池が ある、この燃料電池をジェットエンジンと組み合 わせたハイブリッド推進システム¹⁾が JAXA で研 究されている. ハイブリッド推進システムでの利 用を検討されている燃料電池は,電解質膜にイッ トリア安定化ジルコニア(YSZ: Yttria Stabilized Zirconia)を用いる固体酸化物形燃料電池(SOFC: Solid Oxide Fuel Cell)で,長所として燃料電池の中 で最も発電効率が高い,作動温度が高温であるた め触媒が不要, 排熱を用いた複合システムに利用 できるといった点が挙げられる.本研究では, SOFC をジェットエンジンと組み合わせた際に 考えられる発電環境変化を模擬し,発電性能にど のような影響を及ぼすのか、また SOFC の破損や 劣化について研究を行う.

SOFC の欠点として,電解質がセラミック材料 であるため始動,停止に時間がかかることが挙げ られる.ハイブリット推進システムとして利用す る際には,なるべく短い始動時間である方が良い と考えられる.本報告では,昇温速度が SOFC に 及ぼす影響を調べるため,始動中の OCV (Open 日大生産工 野村 浩司 日大生産工 菅沼 祐介 JAXA 岡井 敬一 JAXA 田頭 剛

Circuit Voltage)を計測し,昇温速度が SOFC に及 ぼす影響調べる昇温速度変化試験を行った.

2 SOFC 製作

NexTech Materials 社から販売されているアノ ード支持型単極セル AEB-2.0 を使用した. 燃料極 は酸化ニッケル(NiO)と YSZ で製作されており, 厚さは 500 から 600µm と公表されている. 電解 質膜は YSZ を用いて製作した 7 から 10 µm の層, GDC を用いて製作した 3 から 5 µm の層の二層で 構成されている.

AEB-2.0 の電解質膜表面に静電噴霧堆積法 (ESD: Electrostatic Spray Deposition)を用いて、ラ ンタンストロンチウムマンガナイト(LSM: Lanthanum Strontium Manganite)とYSZのコンポ ジット材を堆積させ、1200℃で1時間焼結させる. 静電噴霧堆積法とは、液体に電圧を印加させ、静 電気力により微細な液滴を噴霧する方法である.

3 実験方法

昇温速度変化試験は、本研究室で設計、製作した 発電試験装置²⁾で行う.発電試験装置は、高圧容器、 円筒型セラミックス、燃料・空気供給管、セラミッ クファイバーヒータ、温調器、断熱材、MFC、リー ド線、K 種熱電対、背圧レギュレータ、精密デジタ ル圧力計、シーケンサなどから構成されており、試 験圧力は大気圧から 5 MPa、試験温度は室温から 900 ℃の範囲で試験できる.

製作した SOFC にカーレントコレクタを装着 した後, 筒型セラミックスに設置し, 性能試験装 置の高圧容器内に設置する. 真空ポンプを用いて

Durability Test to Power Generation Environmental Change of Planar Solid Oxide Fuel Cell

Ryoya SHIMIZU, Hiroshi NOMURA, Yusuke SUGANUMA, Keiichi OKAI and Takeshi TAGASHIRA

容器内の空気を排出し,窒素を充填する.セラミ ックファイバーヒータで SOFC 周辺温度を 800℃ まで上昇させる.今回はこの昇温速度を 8,12, 16,および 20 ℃/min となるよう温度調節装置の プログラムにパラメータを設定した.K種熱電対 で計測された SOFC 周辺温度が 500℃付近に達し た後,空気極側に空気,燃料極側に水素を供給し, 600℃に達してから OCV の測定を開始する. 800℃に達し OCV が安定するまで測定を行う.

4 実験結果

図1に昇温速度変化試験の結果を示す. 横軸が 時間, 左縦軸が OCV, 右縦軸が SOFC 周辺温度 である. 図1Cの試験では,セラミックファイバ ーヒータの出力が足りず,実質15℃/min となっ た.図1Dの試験では20℃/minの昇温速度を実現 するために,燃料流量を下げて昇温速度を上げよ うと試みた.しかしながら,実質昇温速度は17℃ /min となった.それぞれの結果を見ると,どの昇 温速度でもOCV は理論 OCV の約1V 付近³⁾まで 上昇しており,SOFC の破損は観察されなかった. これ以上の昇温速度は今の性能試験装置では実 現できず,新しく急速昇温が可能な試験装置を設 計し,試験する必要がある.

5 結言

SOFC の始動性を調べるため,始動時の昇温速 度を増大させて **SOFC** の破損・劣化の有無を確認 した.その結果,17 ℃/min 以下の昇温速度では, **SOFC** は破損・劣化しないことがわかった.

「参考文献」

同井敬一,渡辺紀徳,航空機エンジン電動化の最新研究状況,日本ガスタービン学会誌 Vol.43
No.3(2015.5), pp.50-55.

 青木貴志,固体酸化物形燃料電池の加圧雰囲 気発電試験,修士論文(2015).

3) 田川博章,固体酸化物燃料電池と地球環境, アグネ承風社(1998), pp.116-118.

Fig.1 Result of temperature rise rate change test.

-794-