O3ファインバブルによる酸素種活性種の生成と ビスフェノールAの分解促進

日大生産工(院) ○徐 康健 日大生産工 佐藤 敏幸, 岡田 昌樹, 日秋 俊彦, 松本 真和

1 緒言

液相中での有機物の促進酸化法において, O₃ は有機物の電子密度の高い部位(二重結合など) との反応性が高く,電子吸引性の高い置換基を持 つ物質や飽和脂肪族との反応性は乏しいことが 知られている。一方、O3とOHとの反応より逐次 的に生じる酸素種活性種 (OH・, OOH・, O_2 ・ など)は、有機物の置換基や結合様式によらず速 やかに反応することから,酸素種活性種を効率的 に生成可能な手法の開発が望まれている。そこで, 本研究ではO3をファインバブルとして液相内に 導入し,酸素種活性種の生成および難分解性有機 物の分解を促進する技術の開発を行った。気泡の 微細化がもたらす現象・効果として, i) 気-液界 面積の増大にともなう物質移動・反応吸収の促進, ii) 浮力減少にともなう気泡の平均滞留時間の増 加, iii) 気泡の表面電位による気-液界面での相互 作用, iv) 気泡の圧壊による局所的な高温・高圧 場の形成が挙げられる」。したがって、反応系内 にO3ファインバブルを導入すれば、気-液界面近 傍に濃縮されるOHとO3の反応および圧壊にと もなう高温・高圧場の形成による酸素種活性種の 生成促進が期待できる。本稿では、O3気泡の微細 化が酸素種活性種の生成およびビスフェノール A (BPA) の分解に及ぼす影響について述べる。

2 実験装置および方法

2.1 実験装置

実験装置の概要を**Fig.1**に示す。 O_2 モル供給速 度 F_{02} が0.28 mmol/(l・min)で誘電体バリア放電反 応器(昭和システムサービス社製)に供給し,一 次電圧を60 Vで印加した。得られる O_3 モル供給速 度 F_{03} は0.014 mmol/(l・min)である。生成した O_3/O_2 混合ガスを平均気泡径 d_{bbl} が50 μ mのファインバ ブルとして液相に連続供給した。ファインバブル はモーターの回転によってインペラー背面に生 じる負圧とインペラーの剪断力を利用した自吸 式装置(Tech Ind.製)を用いて発生させた。また, 比較として, d_{bbl} が500または5000 μ mの気泡を F_{03} が同一の条件下で分散式装置(散気板孔径:65160 μm)を用いて発生させた。撹拌速度はいずれの装置においても1500 min⁻¹である。

2.2 全酸素種活性種濃度およびOH・濃度の測定

初濃度が10.0 mmol/lのサリチル酸(SA)水溶液 2 $l l c d_{bbl}$ が異なるO₃/O₂気泡を80 min連続供給した。 2,3-ジヒドロキシ安息香酸はSAとOH・の反応に より生成するため²⁾, 2,3-ジヒドロキシ安息香酸濃 度はOH・濃度 C_{OH} と等しいと仮定した。2,3-ジヒ ドロキシ安息香酸の濃度はHPLC(日立製作所製) を用いて定量した。また,比色O₃濃度計(O3-3F, 笠原理化製)を用いて測定したO₃濃度は,酸素種 活性種の全濃度 C_{OS} と見なした。

Fig. 1 Experimental apparatus

2.3 BPAの分解

初濃度が 0.2 mmol/l の BPA 水溶液 2 l に d_{bbl} が異なる O_3/O_2 気泡を 80 min 連続供給し,残存 BPA 濃度 C_{BPA} ,分解生成物であるヒドロキノン (HQ) 濃度およびヒドロキシアセトフェノン (HAP) 濃度 C_i (i= HQ, HAP)を HPLC(日立 製作所製) によって測定した。

3 実験結果および考察

3.1 平均気泡径を変化させた場合の酸素種活性 種濃度の時間変化

*d*_{bbl}が異なるO₃/O₂気泡を連続供給した場合の *C*_{OS}および*C*_{OH}.の時間変化を**Fig. 2**に示す。供給時

Acceleration of Oxygen Species Generation and Bisphenol A Degradation by O₃ Fine Bubbles

> Kouken JO, Toshiyuki SATO, Masaki OKADA, Toshihiko HIAKI and Masakazu MATSUMOTO

間が同一下では、 d_{bbl} の減少にともない C_{OS} および C_{OH} .がともに増大することがわかる。また、初期 における C_{OH} .の増加速度 r_{OH} .は、 d_{bbl} が50、5000 µm でそれぞれ5.3、1.1 µmol/($l \cdot min$)であり、 d_{bbl} を 1/100に低下させると r_{OH} .が5倍程度に増大した。

Fig. 2 Time change in C_{OS} and C_{OH} .

3.2 平均気泡径を変化させた場合の残存BPA濃 度および分解生成物濃度の時間変化

BPA水溶液に d_{bbl} が異なる O_3/O_2 気泡を連続供給 した場合の C_{BPA} の時間変化を**Fig.3**に示す。また, 分解生成物として, HPLCにより定量が可能であ った C_{HQ} および C_{HAP} の時間変化も示す。 d_{bbl} が5000 µmでは,分解開始後80 minにおいて, BPAが約 23%分解され, HQとHAPの生成が確認された。 一方, d_{bbl} が50µmでの C_{BPA} は時間増加にともない 顕著に減少し, C_{HQ} および C_{HAP} は分解開始40 min で極大を示した。これより,分解開始後40 min以 降では,OH・およびその他の酸素種活性種は,原 料BPAの一次分解および分解生成物の二次分解 で消費されることが示唆された。

3.3 OH・の生成割合とBPA分解速度および分解生 成物の生成速度の関係

 d_{bbl} と全酸素種活性種に対するOH・の生成割合 r_{OH} ・/ r_{OS} , BPAの分解速度 r_{BPA} および分解生成物の 生成速度 r_i (i=HQ, HAP)の関係をFig. 4に示す。 r_{BPA} , r_{HQ} および r_{HAP} は、時間変化における初期の傾きよ り算出した。 d_{bbl} の減少にともない r_{OH} ・/ r_{OS} および r_{BPA} が増大した。また、HQおよびHAPは、O3と BPAとの反応ではほとんど生成されず、OH・と BPAの反応による分解生成物であることから³、 O3気泡の微細化にともなうBPAの分解促進が roH./rosの増大に起因することを裏付ける結果となった。

Fig. 3 Time change in C_{BPA} , C_{HQ} and C_{HAP}

Fig. 4 Effects of d_{bbl} on r_{OH} . $/r_{OS}$, r_{BPA} and r_i

「参考文献」

- K. Onoe and M. Matsumoto, Micro- and Nanobubbles: Fundamentals and Applications (H. Tsuge Ed.), Singapore, (2014) pp.207-215
- 2) Mccabe DR *et al.*, J. Chromatogr B, 691, (1997) pp. 23-32
- Ricardo A. Torres *et al.*, Ultrasonics Sonchemistry, 15, (2008) pp.605-611

-778 -