ひまわり8号熱赤外データによる日本の都市の熱環境

日大生産工(院) 〇奥山 健志 日大生産工 内田 裕貴日大生産工 岩下 圭史 日大生産工 杉村 俊郎

1 はじめに

次世代静止気象衛星「ひまわり8号」に搭載 されたセンサAHIは従来機である「ひまわり6, 7号 に搭載されたセンサに比べて空間分解能 が向上しており可視、近赤外域は1および 0.5kmに、赤外域は2kmに向上した。また、観 測間隔の短縮がなされ、全球観測は30分から 10分間隔で、また日本付近等特定領域を2.5分 間隔で観測できる。さらに、観測バンド数が増 加しており、可視、近赤外域は1から4バンドに、 中間赤外域は0から6バンドに、熱赤外域は2か ら6バンドに増加した。青バンドが加わり、赤 バンドの分解能が0.5kmに向上しているため、 従来機では見られなかった詳細なトルーカラ 一合成 (RGB=321) やフォールスカラー合成 (RGB=432) が可能となった. 熱赤外バンド の分解能は2kmであるが、同時観測されている 可視、近赤外データにより地球表面の状態が確 認可能である。以上の様に大幅な各種の機能が 向上している。1)

本研究は、「ひまわり8号」が観測した地球表面温度情報から輝度温度を推定し、その結果をほぼ同時刻に観測したTerra ASTERによる校正温度情報と比較したものである。

2 対象地域と使用データ

「ひまわり8号」AHIにより観測された2015年3.4.5.12月の画像から東京(3月30日及び5月10日)・千葉(12月4日)・福岡(4月18日)を抽出し、緯度経度座標に位置合わせした。「ひまわり8号」は地表面温度を観測しており、気象庁より観測値から大気表層の放射輝度、輝度温度への変換係数が提供されている。

一方1999年に打ち上げられたTerra/ASTER は熱赤外領域に観測波長帯 5 (Band10~14) を有し、校正した温度情報の提供 (処理レベル L2B03) が行われている。Fig.1に「ひまわり8 号」のBand13の輝度温度とTerra/ASTERの地 表面温度を示す。

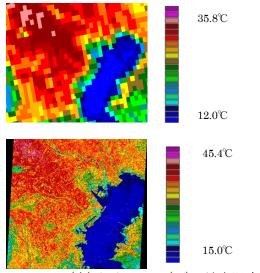


Fig.1 AHI(上)及びASTER(下)の地表温度画像

3 地表面温度推定

「ひまわり8号」AHIが観測した熱赤外データDN(Digital Number)値は以下の手順で放射輝度(I)、輝度温度(T_b)に変換できる。気象庁より提供される各係数をTable1に示す。

$$I = gain \times DN + offset$$

$$hc \qquad 1$$
(1)

$$T_e(\lambda, I) = \frac{hc}{k\lambda} \cdot \frac{1}{\ln\left(\frac{2hc^2}{\lambda^5 I} + 1\right)}$$
(2)

$$T_b = c_0 + c_1 T_e + c_2 T_{e^2} (3)$$

DN:観測値

offset、gain: 気象庁から提供される係数

 T_{\circ} :有効温度 λ :中心波長

h, c, k:定数 co, c1, c2:提供される係数

Table1.放射輝度および輝度温度への変換係数

	B11	B12	B13	B14	B15	B16
μ	8.5926	9.6372	10.4073	11.2395	12.3806	13.2807
DN->I (gain) (×10 ⁻³)	-4.0007	-3.9260	-3.7525	-3.5027	-3.1174	-5.7635
DN->I (offset) (x 10 ⁺¹)	1.6203	1.5900	1.5198	1.4186	1.2625	1.1527
$c_0 (x10^{-1})$	-1.5917	-1.1305	-1.1613	-2.4267	-3.5125	-0.9101
c ₁ (×10 ⁰⁰)	1.0011	1.0009	1.0010	1.0023	1.0036	1.0010
c ₂ (x10 ⁻⁶)	-1.6925	-1.5132	-1.7696	-4.4007	-7.7588	-2.3232

Thermal environment of the urban in Japan by Himawari-8/AHI thermal band data

Kenji OKUYAMA, Yuuki UCHIDA, Keishi IWASHITA, Toshiro SUGIMURA

4 AHIとASTERの地表面温度の比較

AHIによる観測輝度温度をASTERによる補正済地表面温度と比較した。ASTERデータは温度校正されている処理レベルL2B03データ (0.1度単位の情報)を使用した。両者の相関関係をTable2~ Table5に示す。なお、AHIとASTERとでは分解能が異なるため調整 $(10 \times 10$ 画素の平均化)を施した。

比較した結果以下のような特徴があった。

- (1) AHIの各バンドの観測値とASTERデータの相関係数は12月4日のBand15,Band 16を除いて0.8~0.95に達していることから相関は認められる。
- (2) Band13、Band14は他のBandに比べて どの日付とも高い相関係数を示してい る。
- (3) Band12の回帰式の傾きは0.44~0.58、 Band16の回帰式の傾きは0.26~0.32と 他のバンドに比べ傾きが小さい。

5 考察と展望

12月4日(千葉)のBand15、Band16の相関係数が低かったのは季節的な要因が考えられる。12月4日は冬であるため、海面と陸地との温度差が小さくなる。そのことが相関係数の低下に影響したと考えられる。また、Band12、Band16の回帰式の傾きが他のBandに比べて小さいのは、観測波長帯域にSO2、CO2の吸収帯を含んでいることが影響している。

今回の研究では、「ひまわり8号」が観測した 地表面温度情報はASTERデータと相関があり、 都市の温度分布を調査できることが分かった。 今後は季節ごとの特徴を詳細に分析すること や、他の地域や観測日の異なるデータを使った 検証を行い都市の熱環境の評価を実施する予 定である。また、複数バンドを使った簡単な大 気補正(スプリットウィンドウ法)についての 検討も必要であると思われる。

謝辞: 本論文のデータ処理の一部は情報通信研究機構のNICTサイエンスクラウドを用いて行われました。ここに記して感謝の意を表します。

Table2.ASTERとAHIの観測輝度の相関 3月30日(東京)

->41.				
	相関係数	傾き	切片	
Band11	0.9542	1.0047	-12.45	
Band12	0.9452	0.4628	10.31	
Band13	0.9525	0.8962	-2.95	
Band14	0.9586	0.8176	-2.60	
Band15	0.9485	0.6598	-5.56	
Band16	0.9507	0.3198	29.39	

Table3.ASTERとAHIの観測輝度の相関 4月18日(福岡)

	相関係数	傾き	切片
Band11	0.9168	0.9122	-9.22
Band12	0.8757	0.4408	16.74
Band13	0.9024	0.8129	-0.42
Band14	0.9166	0.7403	-0.64
Band15	0.8793	0.5974	-4.38
Band16	0.8637	0.2860	30.24

Table4.ASTERとAHIの観測輝度の相関 5月10日(東京)

	相関係数	傾き	切片
Band11	0.8792	0.8967	-9.63
Band12	0.8501	0.4678	14.66
Band13	0.8759	0.8048	0.03
Band14	0.8831	0.7018	1.02
Band15	0.8571	0.5581	-3.13
Band16	0.8598	0.2613	31.15

Table5.ASTERとAHIの観測輝度の相関 12月4日(千葉)

		(, , , , , ,	
	相関係数	傾き	切片
Band11	0.8277	0.7801	-6.53
Band12	0.8196	0.5854	16.03
Band13	0.8670	0.7017	2.06
Band14	0.8755	0.6382	1.78
Band15	0.7828	0.5109	-1.92
Band16	0.7044	0.3219	29.13

「参考文献」

- 1) 佐々木政幸、操野年之:静止地球環境観測 衛星ひまわり8号及び9号について、日本 リモートセンシング学会誌、Vol.31,pp.255-2 57.2011
- 2) ーー: ひまわり標準データ利用の手引き、 気象庁 (http://www.data.jma.go.jp/mscweb/en/ himawari89/space_segment/hsd_sample/HS_D_ users_guide_jp_v11.pdf)
- 3)--: 放射計(AHI),気象衛星センター (http://www.data.jma.go.jp/mscweb/ja/himawari8 9/space segment/spsg ahi.html)