セキュアスキャン設計のための

強セキュアなシフトレジスタ等価回路の列挙

日大生産工	○近藤 雅之	日大生産工	山崎 紘史
日大生産工	細川 利典	大阪学院大	藤原 秀雄

1. はじめに

暗号回路を含む多くの超大規模集積回路(Very Large Scale Integrated circuits: VLSI)において, 安全(セキュア)かつテストが容易(テスタブル) な回路設計は重要な課題とされている. これら の問題を解決すべく,いくつかのテスト容易化 設計法(Design For Testability: DFT)が提案さ れている. 現在では, DFT の一種であるスキャ ン設計がもっとも利用されている.スキャン設 計とは、回路内部に存在するフリップフロップ (Flip-Flop: FF)をスキャンフリップフロップ と呼ばれる記憶素子に置き換え、数珠状に接続 することで FF の可制御・可観測性を向上させ る. スキャンフリップフロップは, つのマルチ プレクサ(multiplexer:MUX)と 1 つの FF で構 成されており,スト実行時にはシフトレジスタ (以下 SR と略す)を形成するため, FF に任意の 値を外部から制御・観測可能となりテスト容易 性を飛躍的に向上させる[1].

スキャン設計は高いテスト容易性を達成可 能であるが、同時に回路内の機密情報へのアク セスも容易になる.このため、スキャンベース 攻撃による暗号回路の秘密鍵解読等の秘密情報 漏洩の危険性が高いことが指摘されている[2].

現在スキャンベース攻撃に耐えられる安全な スキャン設計法について研究が行われており, 多くの研究が報告されている[2-9,10-13]. 文献 [10,11]では, SR 等価回路を利用したセキュア かつテスト容易なスキャン設計法を提案してい る.また,文献[12,13]では一般化フィードフォ ワード SR 回路(Generalized Feed-Forward Shift Registe:GF²SR に対して,強セキュアな 回路の列挙と合成が報告されている[12,13].

回路の安全性を示す尺度として,攻撃者がSR の構造を特定する確率はSRと等価な回路数の 逆数に比例することから,SR 等価回路の個数 を明らかにすることは重要なことである.本論 文では強セキュアな SR 等価回路の列挙を行い, 強セキュアな SR 等価回路の個数を明らかにす る.

本論文の構成を次に示す. 第2章で強セキュ アな SR 等価回路について説明し, 第3章で強 セキュア SR 回路族を定義する. 第4章で本論 文のまとめと今後の方針を述べる.

2. 強セキュアな SR 等価回路

強セキュアな SR 等価回路とは、回路内のス キャンチェーンを暗号化することで、スキャン ベース攻撃やサイドチャネル攻撃などの脅威よ り回路内の機密情報を守る SR 構造である.以 下に強セキュアな SR 等価回路の構成に必要な 基本構造を定義する.なお本論文において変数 k は SR 回路の FF の個数とする.

Enumeration of Strongly Shift Register Equivalents for Secure Scan Design Masayuki KONDOU, Hiroshi YAMAZAKI, Toshinori HOSOKAWA and Hideo FUJIWARA

定義1: *k段SR*の状態遷移図を*k次ドブル* イングラフと呼ぶ(図1).

定義 2: k 次ドブルイングラフと同型な状態 遷移図を *k 次拡張ドブルイングラフ*と呼ぶ.こ のとき状態割当て,入出力割当ては同一でなく ても良い(図 2(b)).

定義3:状態遷移図がk次拡張ドブルイング ラフとなる回路を *k段SR*と呼ぶ(図2(a)).

定義 4:回路 C の k 次拡張ドブルイングラフ において,対応する状態割当てが k 次ドブルイ ングラフと異なっている(入出力割当ては同一 でなくても良い)場合,その状態を*安全状態*と呼 ぶ(図 2).

定義5:回路Cに対し,Cの全状態が安全状 態である(入出力割当ては同一でなくても良い) 場合,Cを*強セキュアなSR回路*と呼ぶ(図2(a)).

定義6:回路Cに対し、Cの全状態が安全状 態かつ対応する入出力割当てがk次拡張ドブル イングラフと同一の場合、Cを**強セキュアなSR** 等価回路と呼ぶ.

2.1 強セキュアの判定

k 段ドブルイングラフを基に強セキュアの判 定を行う場合,全状態を判定する必要がある. しかしながら,k 段 SR の状態数は 2^kとなり, 状態数は指数的に増加するため,k 段ドブルイ ングラフの生成は困難である.そのため,強セ キュアであるか,否かの判定には記号シミュレ ーションを用いる.

記号シミュレーションを用いて判定を行う際,

それぞれの状態が制御・観測からみて安全であ る必要がある.

定義7:回路Cにおいて,任意の状態に遷移 させる入力系列が,SRの入力系列と異なる場 合,*スキャンイン安全*と定義する.

定義 8:回路 C において,任意の状態から出 力される長さ k の出力系列が,SR の出力系列 と異なる場合,*スキャンアウト安全*と定義する. 図 3(a)に,図 1(a)の回路に対する記号シミュ レーションの結果,図 3(b)に,図 2(a)の回路に 対する記号シミュレーションの結果を示す.

任意の状態(y₁,y₂,y₃)=(x₃,x₂,x₁)とし,この状態 に遷移させる入力系列{ $x(t_1),x(t_2),x(t_3)$ }は記号 シミュレーション結果より,SR では入力系列 { $x(t_1),x(t_2),x(t_3)$ }=(x_1,x_2,x_3)となり,図 3(b)の回 路では入力系列{ $x(t_1),x(t_2),x(t_3)$ }=($\neg x_1, \neg x_2, \neg$ x₃)となる.二つの入力系列(x_1,x_2,x_3),($\neg x_1, \neg$ x₂, $\neg x_3$)は異なっているため図 3(b)の回路はス キャンイン安全となる.

任意の状態を (y_1, y_2, y_3) とし、この状態から出 力される出力系列 $\{z(t_1), z(t_2), z(t_3)\}$ は記号シミュ レーション結果より、SR では出力系列 $\{z(t_1), z(t_2), z(t_3)\}=(y_3, y_2, y_1)$ となり、図 3(b)の回路 では出力系列 $\{z(t_1), z(t_2), z(t_3)\}=(\neg y_3, \neg y_2, \neg y_1)$ となる.二つの出力系列 (y_3, y_2, y_1) 、($\neg y_3, \neg y_2$, $\neg y_1$)は異なっているため図 3(b)の回路はスキ ャンアウト安全となる.

x		• y ₁	• y ₂	→ y ₃	→ Z
時刻t	x	<i>y</i> ₁	y_2	<i>y</i> ₃	z
t_1	<i>x</i> ₁	<i>y</i> ₁	y_2	<i>y</i> ₃	y ₃
t_2	<i>x</i> ₂	<i>x</i> ₁	y_1	<i>y</i> ₂	y ₂
t_3	<u>x</u> 3	<i>x</i> ₂	x_1	y_1	<u>y</u> 1
		x ₃	<i>x</i> ₂	<i>x</i> ₁	

(a)SR 回路に対する記号シミュレーション結

(b) 図 2(b)の回路に対する記号シミュレーション結果

図 3. 記号シミュレーションを用いた強セキュ ア判定

3. 強セキュアな SR 等価回路族と濃度

拡張 SR を実現する 5 種の線形回路, I²SR (Inverter Inserted Shift Register), LF²SR (Linear Feed-Forward Shift Register), LFSR (Linear Feedback Shift Register), I²SR+LF²SR, I²SR+LFSR を用いて,強セキ ュアな SR 等価回路族と濃度について考察する.

$3.1 I^2SR$

I²SR は SR 回路に NOT ゲートを挿入した 回路である(図 2, 図 3(b)参照).

定理 1:外部入力を入力とする FF に対し、 入力にのみ NOT ゲートを挿入し,回路全体で NOT ゲートがそれのみの I²SR はスキャンアウ ト安全ではない(図 4(a)参照).

定理 2: FF からの出力が外部出力となる FF に対し、出力にのみ NOT ゲートを挿入し、回 路全体で NOT ゲートがそれのみの I²SR はスキ ャンイン安全ではない(図 4(b)参照).

k 段 I²SR の総数は NOT ゲートの挿入箇所が k+1 であることから、2^{k+1-1} となる. 強セキュ アな k 段 I²SR は定理 1, 定理 2 より 2^{k+1-3} と なる. また, SR 等価かつ強セキュアな k 段 I²SR は 2^{k-1} となる.

3.2 LF²SR と LFSR

LF²SR は SR の入力方向から出力方向へ XOR ゲートによるフィードフォワードの接続 を付加した回路である(図 5(a)参照).

LFSRはSRの出力方向から入力方向へXOR ゲートによるフィードバックの接続を付加した 回路である(図 5(b)参照).

定理 3: XOR ゲートのみを挿入された SR 回 路で行われる演算は,排他的論理和のみとなる (図 5 参照).すなわち,初期状態(0,0,…,0) に対して入力系列が(0,0,…,0)のときの遷移 する状態は(0,0,…,0)かつ出力系列は(0,0, …,0)となる.したがって,LF²SR と LFSR に 属する回路は,構造に関わらず強セキュアにな らない.

k段LF²SR, k段LFSRの総数は, どちらも 2^{k(k+1)/2-1}である.強セキュアなk段LF²SR, k 段LFSRの数は定理3より0(存在しない)とな る.また, SR等価かつ強セキュアなk段LF²SR, k段LFSRは,定理3より0となる.

3.3 I²SR+LF²SR ≿ I²SR+LFSR

I²SR+LF²SR は LF²SR に NOT ゲートを, I²SR+LFSR は LFSR に NOT ゲートを挿入し た回路である.

定理 4:SR 等価かつスキャンイン安全な I²SR+LF²SR は強セキュアである.

定理 5: SR 等価かつスキャンアウト安全な I²SR+LFSR は強セキュアである.

	SR 等価	強セキュア	非強セキュア			
	回路総数	回路数	回路数			
I ² SR+	0.45	766	100			
$\rm LF^2SR$	940	799	190			
I ² SR+	045	750	107			
LFSR	940	730	107			

表1. 定理4, 定理5の検証結果

定理 4, 定理 5 の証明のため SREEP を用い て 4 段 I²SR+LF²SR(I²SR+LFSR)を検証した (表 1 参照).

k 段 I²SR+LF²SR, k 段 I²SR+LFSR の総数 は,どちらも(2^{k(k+1)/2-1})(2^{k+1-1})となる. 定理 4, 定理 5 より強セキュアな k 段 I²SR+LF²SR, k 段 I²SR+LFSR は少なくとも(2^{k(k-1)/2-1})(2^{k-1})と なる.また,SR 等価かつ強セキュアな k 段 I²SR+LF²SR, k 段 I²SR+LFSR は,少なくと も(2^{k(k-1)/2-1})(2^{k-1})となる.

4. まとめと今後の方針

本論文では強セキュアな SR 等価回路の列挙 を行い,強セキュアな SR 等価回路の個数を明 らかにした.

今後の研究方針として[10, 11]で示されている SR 等価回路に対し, SR 等価性を維持しつつ SR 等価回路の強セキュアを実現する手法の提 案を目指す.

参考文献

[1]. H. Fujiwara. *Logic Testing and Design for Testability.* The MIT Press, 1985.

 [2]. B.Yang, K. Wu, and R.Karri. "Scan based side channel attack on dedicated Hardware implementations of data eneryption standard," International Test Conference 2004,pp339-344,2004

[3]. B. Yang, K.Wu, and R. Karri, "Secure scan: A design-for-test architecture for crypto chips," IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems, vol.25, no.10, pp.2287–2293, 2006.

[4]. D. Hely, F. Bancel, M. L. Flottes, B. Rouzeyre, and N.Berard. "Scan design and secure chip" 10th IEEE Intertional On-line Testing Symposium,

[5]. J. Lee, M. Tehranipoor, C. Patel, and J. Plusquellic, "Securing designs against scan-based side-channel attacks," IEEE Trans. on Dependable

and Secure Computing, vol.4, no.4, pp.325–336, 2007.

[6]. S. Paul, R. S. Chakraborty, and S. Bhunia, "VIm-Scan: A low overhead scan design approach for protection of secret key in scan-based secure chips," Proc. 25th IEEE VLSI Test Symposium. pp.455–460,2007.

[7]. G. Sengar, D. Mukhopadhyay, and D. R. Chowdhury, "Secured flipped scan-chain model for crypto-architecture," IEEE Trans. On Computer-Aided Design of Integrated Circuits and Systems, vol.26, no.11, pp.2080–2084, Nov. 2007.

[8]. M.Inoue, T.Yoneda, M.Hasegawa, and H.Fujiwara,"Partial scan approach for secret information protection,"14th IEEE European Test Symposium, pp.143-148,May.2009

[9] U. Chandran, and D. Zhao, "SS-KTC: A high-testability lowoverhead scan architecture with multi-level security integration," Proc. 27th IEEE VLSI Test Symposium, pp.321–326, 2009.

[10] H. Fujiwara, and M. E. J. Obien, "Secure and testable scan design using extended de Brujin graph," Proc. 15th Asia and South Pacific Design Automation Conference, pp.413–418, 2010.

[11].H.Fujiwara,K.Fujiwara,and

H.Tamamoto,"Enumeration and Synthesis of Shift Registar Equivalents for Secure Scan Design", IEICE DC2009-58, pp13-18, 2009,12

[12]. K. Fujiwara, and H. Fujiwara, "Generalized feed-forward shift registers

and their application to secure scan design," IEICE Trans. on

Inf. & Syst. vol.E96-D, no.5, pp.1125-1133, 2013.

[13]. Hideo FUJIWARA, Fellow and Katsuya FUJIWARA, Member, "Strongly Secure Scan Design Using Generalized Feed Forward Shift

Registers", IEICE Trans. on Information and Systems, Vol.E98-D, No.10, pp.1852-1855, October 2015