コンクリート充填長方形鋼管の構造性能に関する研究

ーその8 柱梁接合部の検討-

日大生産工(院) ○岡 修平 日大生産工 藤本 利昭

体2体の合計8体を製作した。

1 はじめに

筆者らは、長方形断面を有するCFT柱の構造 性能を把握することを目的として、継続的に研 究を行ってきた¹⁾。本研究では、柱の研究に引 き続き、長方形CFT柱-鉄骨梁接合部を模擬し た接合部パネルの構造実験を行い、その構造性 能について検討を行った。

2 実験概要

2.1 実験計画

柱にCFTを用いた骨組では、図-1に示すよう に水平力に対して主として部材の曲げで抵抗 し、柱梁接合部には大きな応力が作用する。一 般的に柱梁接合部に関する実験では、図-2(a) に示す柱梁接合部を中心とした部分架構実験 が行われるが、本研究では長方形接合部パネル の基礎的な構造性能を得ることを目的として いるため、更に簡略化した図2-(b)に示すような 荷重条件を模擬した実験を行うこととした。

2.2 試験体

図-3に試験体形状を,表-1に試験体の一覧を 示す。試験体は,パネル部を含んだ梁型試験体 とした。

実験パラメーターは、加力方向(断面の強軸, 弱軸方向),接合部の辺長比h/D(ここで,h: 接合部長さ,D:鋼管せい),充填コンクリー トの有無および載荷方法(一方向単調載荷およ び正負漸増繰り返し載荷)とした。なお柱部分 の鋼管は、パネル部の破壊に先行して曲げ破壊 しないよう、約2倍の板厚の鋼管を使用するこ とで耐力を確保した。

試験体数は、CFT試験体6体、中空鋼管試験

図-3 試験体形状

	使用材料		鋼管幅	鋼管せい	パネル板厚		パネル長さ		柱部板厚		柱長さ	全長		
試験体	细色	コンクリート	В	D	tp	D/tn	h	<i>ь/</i> Л	tc	D/ta	Lc	L		備考
	当 王 王 王 王 王 王 王 王 王 王 王 王 王 王 王 王 王 王 王		(mm)	(mm)	(mm)	D/μ	(mm)	1/0	(mm)	D/ 10	(mm)	(mm)		
No.1	STKR400	Fc27	150	200	4.36	45.9	200	1.00	8.41	23.8	750	1700	CFT	
No.1-S		—										1700	S	出言
No.2		Fc27					250	1.25			700	1650	CFT	
No.3		Fc27	200	150	4.36	34.4	200 1	1.33	8.41	17.8	750	1700	CFT	中词
No.3-S		-											S	
No.4		Fc27					250	1.67			700	1650	CFT	
No.5		Fc27 <u>150</u> 200	200	4.00	45.9	000	1.00	0.41	23.8	.8 750	1700 057	OFT		
No.6			200	150	4.36	34.4	200	1.33	8.41	17.8	/50	1700	GEL	繰り返し

表-1 試験体一覧

Study on Structural Performance of Concrete Filled Rectangular Steel Tubes —Part.8 Investigation of Beam-to-Column Connections—

Shuhei OKA and Toshiaki FUJIMOTO

2.3 使用材料

試験体に使用した鋼管および充填コンクリ ートの材料試験結果を表-2,表-3に示す。鋼管 には、市販のSTKR400材を使用し、充填コンク リートは設計基準強度*F*_c=27N/mm²の普通コン クリートを用いた。

	板厚 降伏強度		引張強度	ヤング率	破断伸び							
		t	σ,	σ _t	Es	3						
	ım)	(N/mm^2)	(N/mm^2)	(kN/mm ²)	(%)							
パネル部分	4.	36	384	452	199	38						
柱部分	8.	41	423	479	207	19						
表-3 材料試験結果(コンクリート)												
	設計 F。	ŀ基準強度 (N∕mm²)	圧縮強度 σ _B (N/mm²)	ヤング率 E _c (kN/mm ²)	備考							
並ぶ っい.5日		07.0	27.8	27.8	単調							
音通コンクリ		27.0	30.1	26.8	繰り返し							

表-2 材料試験結果(角形鋼管)

2.4 加力および計測

加力方法を図-4に示す。載荷には5000kN構造 物試験機を使用し、パネル部に作用するせん断 力が卓越するよう逆対称加力(大野式加力)と して行った。なお、軸力は作用させていない。 実験は一方向単調載荷および繰り返し載荷と した。一方向単調載荷とした試験体では、パネ μ のせん断変形角 γ (= δ/h , δ : 接合部鉛直変位) が10%まで加力することを基本とした。また, 繰り返し載荷とした試験体では、図-5に示す載 荷プログラムのルールに従い,変位制御による 正負漸増繰り返し載荷とし,試験体接合部パネ ルのせん断変形角yが, y= 0.50, 1.00, 1.50, 2.00, 3.00, 4.00%に達するごとに加力点および支持 点を入れ替えることで行った。最終的には一方 向単調載荷と同様に、正方向に10%まで加力す ることを基本とした。

3 実験結果の検討

3.1 せん断力 - せん断変形角関係

図-6に単調載荷とした試験体のせん断力Q-せん断変形角y関係を示す。図-6(a)は加力方向 およびコンクリート充填の有無の影響を,同図 (b)は加力方向およびパネル長さによる影響を 比較して示している。なお図の縦軸は,パネル に作用するせん断力,横軸はパネル部のせん断 変形角で表示している。

図-6(a)より、中空鋼管試験体、CFT試験体と もに強軸方向に載荷した試験体 (No.1, No.1-S) の剛性および耐力が、弱軸方向に載荷した試験 体 (No.3, No.3-S) より大きくなることがわか る。また中空鋼管試験体 (No.1-S, No.3-S) で は、鋼管の降伏後 γ = 5~10×10⁻² rad.程度まで 徐々に耐力が上昇しているのに対し、CFT試験 体では γ = 2×10² rad.程度で最大耐力を示した後、 僅かに耐力が低下するものの、その後は γ = 10 ~13×10² rad.程度まで耐力を維持し、安定した 挙動を示している。

図-6(b)より,パネル長さの差異による比較で は,パネル長さが長い試験体(No.2, No.4)が, パネル長さが短い試験体(No.1, No.3)に比べ 耐力は若干低くなる。また最大耐力以降の耐力 低下はパネル長さが長い試験体のほうが僅か であり,いずれの試験体も変形能力が優れてい ることが確認できる。

図-7に繰返し載荷とした試験体のせん断力 *Q* ーせん断変形角y関係を示す。図-6と同様に, 図の縦軸はパネルに作用するせん断力,横軸は パネル部のせん断変形角で表示している。 図-7(a)は、強軸方向に繰り返し載荷とした CFT試験体No.5の結果を、同図(b)は、弱軸方向 に繰り返し載荷としたCFT試験体No.6の結果 を、比較のため試験体形状が同一で一方向単調 載荷の試験体 (No.1, No.3)の結果と併せて示 している。図-7(a)より、強軸方向に繰り返し載 荷とした試験体No.5は、単調載荷とした試験体 No.1よりも最大耐力は僅かに大きいが、それ以 降の耐力低下は大きくなっていることがわか る。これは、試験体No.1ではパネルウエブ面の せん断座屈が γ =7.5%で生じたのに対し、試験 体 No.5 では繰り返し載荷の影響により γ =-2.00%の加力サイクル時にせん断座屈が生 じたことと関連していると推察できる。

図-7(b)より, 弱軸方向に繰り返し載荷とした 試験体No.6も, 単調載荷とした試験体No.3より も最大耐力が僅かに大きくなったが, 最大耐力 以降の耐力低下は大きくなった。これは強軸方 向の場合と同様に, No.3ではウエブ面のせん断 座屈がγ≒5.0%で生じたのに対し, 試験体No.5 では繰り返し載荷の影響によりγ=-2.00%の加 力サイクル時にせん断座屈が生じたためと考 えられる。

繰返し載荷とした試験体を載荷方向の違い により比較すると,履歴曲線ならびに最大耐力 以降の耐力低下ともに差異は認められなかっ た。

3.2 破壊形状

図-8に全試験体の破壊形状を示す。各試験 体ともに試験体中央部のパネル部分のせん断 破壊が顕著であり、パネル部左右の柱部分の 損傷ならびに変形はわずかであった。

また、中空鋼管試験体(No.1-S, No.3-S)では、パネルのせん断座屈が鋼管内側に生じているのに対し、CFT試験体では充填コンクリートの存在により、鋼管の外側に生じ、座屈形状に差異が認められた。

3.3 接合部耐力

表-4に実験結果の一覧を各部の計算耐力と 併せて示す。表中の各耐力はパネルに作用する せん断力に換算した値である。なお降伏耐力実 験値_eQ_yは、1/3スロープファクター法により求 めた。

CFT試験体の柱部およびパネル部の曲げ耐 力は,降伏・終局耐力共に日本建築学会「コン クリート充填鋼管構造設計施工指針(以下, CFT指針)」²⁾に基づき,長方形断面を対象と した式で表されている文献3)の設計式により 算定した。また接合部のせん断耐力計算値は, 文献4)を参考に,CFT指針に示された設計式を 長方形断面に対応した式として求めた値であ る。

ここで、 $_{a}A_{w}$:鋼管ウェブの断面積(=2t(D-t)), $_{c}B$, $_{c}D$: コンクリートの幅およびせいであり、 $_{p}\beta$ は正方形断面を対象に導かれた近似式であ る。

-63 -

c)各耐力の比較

表-4より、各試験体ごとの計算耐力を比較す ると、パネルの終局せん断耐力に対して、パネ ル部・柱部の曲げ耐力(降伏・終局)は十分に 大きな値となるよう計画されていることがわ かる。また実験の最大耐力に対してもパネル 部・柱部の計算曲げ耐力は大きく,本実験では 全ての試験体が, 接合部パネルのせん断破壊に より最大耐力が決定したものと判断される。

次に実験パラメータごとの試験体の比較で は、同一断面の中空鋼管試験体とCFT試験体を 比較した場合,充填コンクリートの影響により CFT試験体の実験値が高い値を示している。ま た,パネル形状の違いによる比較では,弱軸に 対し強軸試験体が,パネル長さの長い試験体に 対し短い試験体の耐力が高い値を示している。

実験値と計算耐力との比較では,中空鋼管試 験体の実験値は降伏耐力が計算値の0.87, 0.82 倍,終局耐力が計算値の1.24, 1.32倍であった。 それに対し、CFT試験体の実験値は、降伏耐力 が計算値の1.05~1.11倍,終局耐力が計算値の 1.13~1.16倍であり、中空鋼管試験体に比べ CFT試験体の計算耐力と実験値との対応が良 い結果となった。またパネル形状(強軸・弱軸, パネル長さ)の違いによる降伏耐力,終局耐力 の実験値と計算値との対応に明確な差異は認 められず,式(1)~(6)により長方形CFTパネル の耐力をほぼ評価できるものと考えられる。

4 まとめ

長方形 CFT 柱-鉄骨梁接合部を模擬した構 造実験により以下の知見を得た。

- 1) 長方形 CFT 接合部パネルは優れた変形能 力を有しており,パネルのせん断変形角 γ=1.0%程度の大変形まで安定した挙動を 示す。
- 2) 長方形 CFT 接合部パネルのせん断耐力は, CFT 指針に示された設計式によって、断面 幅と断面せいを分けて評価した式(1)~(6) により安全側に評価できる。

<謝辞>

設計式の検討に際し, 鹿島建設 福元敏之博士にご指 導いただきました。ここに記して謝意を表します。

参考文献

- 1) 長崎透, 荒井望, 岡修平, 藤本利昭: コンクリート 充填長方形鋼管の構造性能に関する研究 その 1~ 7,日本大学生産工学部学術講演梗概集,2012~2014
- 2) 日本建築学会:コンクリート充填鋼管構造設計施工 指針, 2008
- 3) 藤本利昭,田中宏和,平出亨,竹中啓之:断面形 状を考慮した角形 CFT 柱の設計式,日本建築学会 技術報告集, 第 31 号, pp. 757-760, 2009.10
- 4) 福元敏之: コンクリート充填角形鋼管柱・鉄骨梁接 合部パネルの弾塑性性状に関する研究,日本建築学 会構造系論文集, 第 550 号, pp.183-190, 2001.12

(e)試験体No.3

(f)試験体No.4 図-8 各試験体の最終破壊

(g)試験体No.3-S

(h) 試験体No.6

試験体	計算値											宝騇値		宝畭值/計質値	
			パネルせ	ん断耐力		パネル曲げ耐力 柱曲げ耐力			入水區		大歌唱/前开唱		変形角		
	降伏	降伏	降伏	終局	終局	終局	降伏	終局	降伏	終局	降伏	終局	陈佳	紋巳	
	$_{ps}Q_y$	$_{pc}Q_{y}$	$_{p}Q_{y}$	$_{ps}Q_{u}$	$_{pc}Q_{u}$	_p Q _u	$_{p}Q_{my}$	$_{p}Q_{mu}$	cQ my	_c Q _{mu}	_e Q _y	_e Q _u	$e^{\rho \mp i \Lambda}$	₩≈1₽J _e Q _u ∕ _p Q _u	(%)
	(kN)	(kN)	(kN)	(kN)	(kN)	(kN)	(kN)	(kN)	(kN)	(kN)	(kN)	(kN)			(/0)
No.1	378	106	485	378	200	578	676	911	1076	1814	520	662	1.07	1.15	1.9
No.1-S	378	-	378	378	-	378	676	798	1076	1619	330	469	0.87	1.24	8.75
No.2	378	100	479	378	169	548	541	729	1076	1451	525	618	1.10	1.13	1.14
No.3	282	107	388	282	173	454	579	729	911	1459	430	528	1.11	1.16	1.71
No.3-S	282	-	282	282	-	282	579	655	911	1323	230	371	0.82	1.32	11.1
No.4	282	100	382	282	144	425	463	583	911	1167	400	490	1.05	1.15	10.14
No.5	378	114	492	378	214	592	676	917	1344	1823	513	672	1.04	1.13	1.36
No.6	282	114	396	282	185	466	579	732	1139	1953	380	540	0.96	1.16	0.89

表-4 実験結果一覧