光学活性[CpFe(Prophos)L]PF₆ (L = PPh₂(O[']Pr), NCMe)型錯体の配位子交換反応 およびその立体化学

日大生産工(院) 〇黒澤 誉基 日大生産工 津野 孝 レーゲンスブルグ大 ヘンリ・ブルナー

1. 緒言

三ツ脚ピアノ椅子型の構造をとる18電子 [ηⁿ-C_nH_nMLL'X]錯体は,極性溶媒中で容易に単 座配位子が解離し,不飽和16電子中間体を与え る.この中間体は様々な触媒的不斉合成へ利用 されており, 単座配位子の解離した金属錯体の 安定性はそれら錯体の不斉触媒能に大きく影 響する¹⁾. 従って, これら光学活性金属錯体を 用いた触媒反応機構および,それら錯体の中間 体の立体構造を明確にすることは,不斉触媒の 観点から極めて重要となる. Brunnerらは光学 活性Mn錯体¹⁾ (R_{Mn})/(S_{Mn})-[Cp $Mn(NO)C(O)PPh_3$] とRu錯体²⁾ (R_{Ru} , R_{C})/(S_{Ru} , R_{C})-[CpRu(Prophos)Cl], Fe錯体^{3,4)} (R_{Fe} , R_{C})/(S_{Fe} , R_{C})-[CpFe(Prophos)NCMe]X (X = I, PF₆)の中心金属核に対する反転機構と 中間体の立体化学・安定性について検討し、 こ れら錯体の中間体がもとの飽和錯体の立体化 学を維持したピラミダル型構造が準安定化構 造であることを見出した. さらに演者らはFe 錯体について継続的に研究を行い, [CpFe(Prophos)NCMe]I の NCMe/Phosphite 配位 子交換反応および, NCMe/p-NCC₆H₄X配位子交 換反応からPhosphiteの立体障害, *p*-NCC₆H₄X の置換基効果について報告した^{4,5)}. 今回, 中心 金属のFeに結合するPhosphaneのCone Angleを チューニングした[CpFe(Prophos)PPh₂(OⁱPr)]PF₆ のPPh2(OⁱPr)/P(OMe)3配位子交換反応ならびに, [CpFe(Prophos)NCMe]PF₆ (PNCMe/p-NCC₆H₄X

配位子交換反応と中間体を含む反応機構およ びその立体化学について報告する.

2. 実験

[CpFe(Prophos)PPh₂(OⁱPr)]PF₆の合成:THF中 60°Cで[CpFe(Prophos)NCMe]PF₆とPPh₂(OⁱPr)を 20 h加熱還流した.反応溶液をシリカゲルクロ マトグラフィーに通し,濃縮残分をエタノール で再結晶し, (S_{Fe},R_C)/(R_{Fe},R_C)-[CpFe(Prophos)-PPh₂(OⁱPr)]PF₆ (52:48)を得た(31%).これをエ タノールで再結晶し, X線構造解析できる単結 晶(R_{Fe},R_C)-体を得た.

[CpFe(Prophos)PPh₂(OⁱPr)]PF₆DPPh₂(OⁱPr)/

P(OMe)³ 配 位 子 交 換 反 応: $(S_{Fe},R_C)/(R_{Fe},R_C)$ -[CpFe(Prophos)PPh₂(O^i Pr)]PF₆ = 52:48 のCDCl₃溶液 (ca. 27 mmol L⁻¹)にP(OMe)₃ (13 eq.)を加え, Bruker 社製温度可変装置付き Avance-400NMRを用いて³¹P核追跡した. 交換 反応速度定数kを決定し,活性化パラメータ $\Delta H^{\dagger}, \Delta S^{\dagger}, \Delta G^{\dagger}$ を求めた.

[CpFe(Prophos)NCMe]PF₆のNCMe/p-NCC₆H₄X 配位子交換反応: プローブ内を293 Kに保ち, (S_{Fe},R_C)-[CpFe(Prophos)NCMe]PF₆のCDCl₃溶液 (ca. 35 mmol L⁻¹)にp-NCC₆H₄X (X = NMe₂, OMe, Me, NO₂) (10 eq.)を加え, 交換反応を Avance-400NMRを用いて³¹P核追跡し, それぞ れの速度定数kを決定した.

Ligand-exchange reaction of optically-active complexes [CpFe(Prophos)L]PF₆ (L =PPh₂($O^{i}Pr$), NCMe) and their stereochemistry

Takaki KUROSAWA, Takashi TSUNO and Henri BRUNNER

4-57

3. 結果·考察

再結晶より得たジアステレオマーの立体化学
は、X線構造解析から絶対配置が(*R*_{Fe},*R*_C)-体で
ある事が明らかとなった(Figure 1).

Figure 1. ORTEP drawing of $(R_{\text{Fe}}, R_{\text{C}})$ -[CpFe(Prophos)-PPh₂(O'Pr)]PF₆. Hydrogen atoms and an PF₆ anion are omitted for clarity.

[CpFe(Prophos)NCMe]XのMeCN/Phosphite配 位子交換反応によりその反応は、単座配位子の Cone Angleに依存することが報告されている^{3,4)}. Figure 1のFe1-P1の結合距離は2.224(8) Åであ り、これは[CpFe(Prophos)L]PF₆ (L = P(OMe)₃, P(OCH₂)₃CMe)のFeとPhosphite間の結合距離よ りも長い⁴⁾. この錯体は323 K-333 Kの範囲で Phosphane配位子の解離に伴うエピマー化反応 が認められた(Chart 1).

PPh₂(O'Pr)/P(OMe)₃配位子交換反応の結果を Table 1に示す. 333 Kにおける活性化エントロ ピーは大きな負値である. 生成物である $(S_{Fe},R_C)/(R_{Fe},R_C)-2のジアステレオマー比は常に$ 一定であった. これはPPh₂(OⁱPr)の解離後, 直ちにエピマー化反応を受けることを示す.

Table 1. Kinetics of exchange reaction of $[CpFe(Prophos)PPh_2-(O'Pr)]PF_6$ with $P(OMe)_3$ in $CDCl_3$.

Complex ^{a)}	Temp	k	$\tau_{1/2}$	Products first ratio				
	(K)	(min ⁻¹)	(h)	$(S_{\rm Fe}, R_{\rm C})$ -2 / $(R_{\rm Fe}, R_{\rm C})$ -2				
$(S_{\rm Fe}, R_{\rm C})$ -1	325	1.8×10^{-4}	66	84/16				
$(R_{\rm Fe}, R_{\rm C})-1$		5.6×10^{-4}	21	84710				
$(S_{\rm Fe}, R_{\rm C})$ -1	329	2.3×10^{-4}	51	81 / 19				
$(R_{\rm Fe}, R_{\rm C})$ -1		6.4×10^{-4}	18					
$(S_{\rm Fe}, R_{\rm C})$ -1	333	3.4×10^{-4}	34	82 (19				
$(R_{\rm Fe}, R_{\rm C})$ -1		9.7 × 10 ⁻⁴	12	82/18				
$\Delta H^{\ddagger}(S_{\rm Fe},R_{\rm C})-1$ (33)	33K) = 71 :	±12 kJ mol ⁻¹	$\Delta H^{\ddagger}_{(R_{\rm res},R_{\rm C})-1}(333{\rm K})=58\pm10~{\rm kJ~mol^{-1}}$					
$\Delta S^{\dagger}_{(S_{\rm Fe},R_{\rm C})-1}(333{\rm K}) = -133 \pm 35{\rm J}{\rm mol}^{-1}{\rm K}^{-1}\Delta S^{\dagger}_{(R_{\rm Fe},R_{\rm C})-1}(333{\rm K}) = -162\pm 28{\rm J}{\rm mol}^{-1}{\rm K}^{-1}$								
$\Delta G^{\ddagger}_{(S_{\text{Fe}},R_{\text{C}})-1}(333\text{K}) = 115 \pm 24 \text{ kJ mol}^{-1} \qquad \Delta G^{\ddagger}_{(R_{\text{Fe}},R_{\text{C}})-1}(333\text{K}) = 113 \pm 19 \text{ kJ mol}^{-1}$								
a) 1 = [CpFe(Prophos)PPh ₂ (O ⁱ Pr)]PF ₆ , 2 =[CpFe(Prophos)P(OMe ₃)]PF ₆								

293 Kにおける [CpFe(Prophos)NCMe]PF₆の NCMe/*p*-NCC₆H₄X配位子交換反応を³¹P{¹H} NMRで追跡した.配位子の置換基による反応 速度の差は殆ど認めれない.この結果はMeCN の解離が律速であることを示唆する(**Table 2**).

何れも定常状態に達した際のジアスレテオ マー比は殆ど変わらなかったが,反応初期の生 成物のジアステレオマー比は,置換基による差 異が認められた.4 h経過後のジアステレオマ ー比はp位の電子供与能増加に伴い,(*R*_{Fe},*R*_C)-体の比が増加し,Hammett値との間に相関性が 見られた(Figure 2).

Table 2. The MeCN/p-NCC₆H₄X exchange reaction (S_{Fe,R_C})-[CpFe(Prophos)NCMe]PF₆ with p-NCC₆H₄X in CDCl₃ at 293 K.

p-NCC ₆ H ₄ X	k	$\tau_{1/2}$	Diastereomer ratio	$(S_{\rm Fe},R_{\rm C})/(R_{\rm Fe},R_{\rm C})$
Х	min ⁻¹	min	for 4 h	for ∞
Н	1.50×10^{-3}	462	2.88	10.37
NMe ₂	1.80×10^{-3}	385	1.85	13.86
Me	1.66×10^{-3}	418	3.08	12.23
OMe	1.64×10^{-3}	423	2.77	13.57
NO_2	1.57×10^{-3}	440	3.11	12.43

Figure 2. Plots of diastereomer ratio $(S_{\text{Fe}},R_C)/(R_{\text{Fe}},R_C)$ vs. Hammett constant (σ).

4. 参考文献

1) Brunner, H.; Tsuno, T. Acc. Chem. Res. 2009, 24, 1501. 2) Brunner, H.; Muschiol, M.; Tsuno, T.; Takahashi, T.; Zabel, M. Organometallics 2010, 29, 428. 3) Brunner, H.; Ike, H.; Muschiol, M.; Tsuno, T.; Umegaki, N,; Zabel, M. Organometallics 2011, 30, 414. 4) Brunner, H.; Ike, H.; Muschiol, M.; Tsuno, T.; Koyama, K.; Kurosawa, T.; Zabel, M. Organometallics 2011, 30, 3666. 5) 池隼斗, 平成22年度日本大学生 産工学研究科修士論文, 2010.