コンクリートフランジを有する S 梁と RC 柱で構成される柱梁接合部の実験

1 はじめに

柱を鉄筋コンクリート(RC)造、梁を鉄骨 (S) 造とする RCS 構造は、軸力に強い RC 造 と曲げ及びせん断力抵抗に優れるS造を組 み合わせた合理的な架構形式の一つである。 RCS 構造が開発された当初は、柱梁接合部 に高い構造性能を付与する目的で、様々な ディテールが提案されていたが、近年では 所要の構造性能を確保しつつ加工を出来る だけ省力化した、経済性に優れる簡易な接 合部形式の需要が高まっている。そこで, 比較的容易に接合部耐力を確保する方法と して、床スラブによる接合部耐力の増大効 果に着目し、鉄骨梁の上下に板状のコンク リート製部材(以下、コンクリートフラン ジと称する)を取り付けた RCS 架構の開発 に着手した。

本報では梁曲げ降伏前の接合部せん断破 壊を指向させた十字型部分架構実験より、 その構造性能を検証したので報告する。

2 実験計画

表1に試験体一覧、図1に試験体形状お よび断面詳細を示す。試験体は実大の約1/2 縮尺とした十字型部分架構で、柱梁接合部 をふさぎ板で補強した SCC タイプ6体と、 安藤建設(株) 〇田畑 卓

柱梁接合部内に帯筋を配した SCR タイプ1 体の計7体で構成される。柱は断面寸法を b×D=400×400mm とし、主筋に D19 の高 強度鉄筋(USD685)を用いた。梁鉄骨は BH250・140・6・25 で、柱梁接合部内を貫通 させている。

基準試験体であるSCC3では、梁鉄骨の上 側に柱と同幅、下側に柱の半分の幅のコン クリートフランジを取り付けた。コンクリ ート強度は柱部材、コンクリートフランジ ともFc=30N/mm²とし、柱梁接合部内には直 交梁鉄骨を設けている。これに対し、SCC1 およびSCC2ではコンクリートフランジの 影響を確認するため、それぞれ上下、下側 のコンクリートフランジを無くした。stた、 SCC4では直交梁を無くした。SCC5は梁鉄 骨が柱に対して偏心して取り付く試験体で ある。SCC6およびSCR1は、高強度コンク リートの使用を想定し、柱のコンクリート 強度をFc=60N/mm²とした。

コンクリートフランジ内にはひび割れに よる損傷を抑制するための配力筋(D6)を配 置し、コンクリートフランジと梁鉄骨とは 完全合成梁として必要な頭付スタッドで結 合した。接合部帯筋形式の SCR1 は接合部 柱面に鉄骨フランジと同幅の支圧プレート

		SCC1	SCC2	SCC3	SCC4	SCC5	SCC6	SCR1
柱部材	断面∶b×D=400×400mm 主筋∶12−D19 (USD685) 帯筋∶4−D10@75(SD295A)							
柱コンクリート強度		Fc30				Fc60		
梁鉄骨		柱梁接合部貫通型 H250*140*6*25(SN490B) スタッド:2-φ13@200						
コンクリートフランジ 断面寸法	F	無	b×t=400 × 75mm					
	т	\$	Ħ	b×t=200×75mm				
コンクリートフランジ強度		Fc30						
接合部補強形式		ふさぎ板 (t=3.2mm SS400) 2-D6@10					2-D6@100	
梁と柱の面外偏心距離		0mm			80mm	0mm		
直交梁		有			無	有		

表1 試験体一覧

Partial Frame test of Inner Beam-column Joint Composed of Steel Beams

with Concrete-flange and RC Columns

Taku TABATA

図1 試験体形状および断面詳細

を有する。接合部帯筋は鉄骨ウェブ間で分割し、端部135°フックとした。

実験は柱に 0.15Fc の一定軸力を与えた 状態で、柱反曲点位置をピンローラー支持 し、梁に逆対称の正負交番漸増繰り返しの 載荷を行った。

3 実験結果

図2に層せん断力Qと層間変形角Rの関 係、写真1に破壊状況例を示す。また、表 4 に実験結果一覧を示す。いずれの試験体 も R=1/200rad.のサイクルで柱材端部に曲 げひび割れが発生した後、R=1/100rad.のサ イクルで接合部内の鉄骨ウェブ、R=1/50rad. のサイクルで梁端の鉄骨フランジがそれぞ れ降伏し、その後、R=1/33rad.で最大耐力 に達した。

コンクリートフランジが無い SCC1 では、 変形の増大に従って、ふさぎ板上下に発生 した柱曲げひび割れが拡大する性状を示し たが、コンクリートフランジを有する試験 体では、梁端部の曲げひび割れが卓越し、 柱曲げひび割れは比較的広い範囲に分散し てひび割れ幅も軽微であった。これらは最 大耐力以降、梁端部でのコンクリートフラ ンジの圧壊を伴いながら除々に荷重低下し た。ふさぎ板は直交梁のない SCC4 で最終 変形まで弾性範囲内に留まったが、他の試 験体では 1/50rad.前後に降伏が確認され、 最大耐力時にはほぼ全面降伏に至った。ま た、SCC4 は他の試験体に比べて、早期に コンクリートフランジの圧壊が進行する傾 向がみられた。一方、SCR1 は R=1/100rad.

表2 鋼材の材料試験結果

插印l	细插	体田策研	降伏応力	引張強さ	ヤング係数
作主力」	到叫个主	医用固剂	(N/mm^2)	(N/mm^2)	(kN/mm ²)
PL25	SN490	梁鉄骨フランジ	355	515	212
PL6	SN490	梁鉄骨ウェブ	403	525	200
PL6	SN490	接合部支圧板	319	461	204
PL3.2	SN490	ふさぎ板	278	440	194
D19	SD490	柱主筋	540	702	200
D10	SD295A	帯筋	360	522	189
D6	SD295A	接合部帯筋	371	538	187

表3 コンクリートの材料試験結果

	圧縮強度	割裂強度	ヤング係数	
打設部位	(N/mm ²)	(N/mm ²)	(kN/mm ²)	
コンクリートフランジ(下)	24.3	2.15	21.6	
コンクリートフランジ(上)	41.5	2 20	07.4	
柱·接合部 [SCC1~SCC5]	41.5	3.20	27.4	
柱•接合部 [SCC6, SCR1]	55.7	3.74	30.7	

写真1 破壊状況(R=1/25rad.)

のサイクルで接合部内せん断補強筋が降伏 した。接合部せん断ひび割れは変形の増大

図2 層せん断カー層間変形角 関係

に従って多数発生するとともに、柱主筋に 沿う形で鉛直方向に進展した。ふさぎ板形 式の SCC6 に比べて最大耐力以降の荷重低 下が緩やかになる傾向であった。最終破壊 形式はいずれの試験体も接合部せん断破壊 であると判断した。

最大耐力は SCC1 に対して、SCC2 が 17%、 SCC3 が 27%高く、コンクリートフランジ による耐力増大効果が認められた。一方で、 直交梁のない SCC4 は直交梁を有する SCC3 より 28%程度、また、梁が柱に偏心 して取り付く SCC5 は基準試験体 SCC3 よ り 8%程度、それぞれ最大耐力が低下した。

4. 柱梁接合部せん断耐力の評価

ここでは SRC 規準[1]に基づいた接合部 せん断耐力の評価を試みる。SRC 規準式に よるせん断耐力(*JMu*)を以下に示す。

$${}_{J}M_{u} = {}_{c}V_{e} \left({}_{J}F_{s} \cdot {}_{J}\delta + {}_{w}p \cdot {}_{w}\sigma_{y} \right) + \frac{1 \cdot 2{}_{s}V \cdot {}_{s}\sigma_{y}}{\sqrt{3}}$$
(1)

ここで、JFs: 接合部コンクリートせん断 $強度、<math>j\delta: 接合部形状による係数、wp: 接$ $合部内帯筋比、<math>w\sigma_y: 帯筋降伏強度、sV: 接$ $合部内鉄骨ウェブ体積、<math>s\sigma_y: 鉄骨ウェブ降$

表4 実験結果一覧

試験体		SCC1	SCC2	SCC3	SCC4	SCC5	SCC6	SCR1
接合部 鉄骨ウェブ 降伏	Q	155	149	164	213	170	202	169
	R	(6.6)	(4.9)	(5.0)	(7.7)	(5.4)	(5.8)	(5.0)
梁鉄骨 フランジ 降伏	Q	237	251	254	265	253	278	261
	R	(13.1)	(10.8)	(10.0)	(13.1)	(10.0)	(8.9)	(10.0)
ふさぎ板 降伏	Q	300	311	356	土際什	235	360	227
	R	(24.2)	(15.4)	(17.0)	ላቸላ	(8.5)	(13.9)	(8.5)
最大耐力	Q	321	374	409	293	376	431	411
	R	(30.0)	(30.0)	(30.0)	(20.0)	(30.0)	(30.0)	(30.0)

Q:層せん断力(kN)、R:層間変形角(×10⁻³rad.)

伏強度である。

4.1 接合部の有効体積

SRC 規準では梁の構造形式がS造および SRC 造の場合について、それぞれ接合部コ ンクリートの有効体積を下式のように定義 することで、梁構造形式に関わる接合部せ ん断耐力の違いを表現している。

梁S造:
$$_{c}V_{e} = _{C}b/2_{sB}d_{mC}d$$
 (2)

梁 SRC 造:
$$_{c}V_{e} = (_{C}b+_{B}b)/2 \cdot _{mB}d \cdot _{mC}d$$
 (3)

ここで、*cVe*:接合部コンクリート有効体 積、*cb*:柱幅、*bb*:梁幅、*sBd*:梁鉄骨フラ ンジ重心間距離、*mBd*:梁上下主筋重心間距 離、*mcd*:柱最外縁主筋間距離である。

一方、本工法で対象とするコンクリート

フランジは、梁部材として圧縮力には抵 抗できるが、引張力は負担できないとい う特徴がある。そこで、接合部コンクリ ートの有効幅は、図3に示すように接合 部四隅の境界条件を個別に考え、コンク リートフランジが圧縮力を受ける場合は 梁 SRC 造、コンクリートフランジが無い 場合や引張力を受ける場合は梁S造とし て有効幅を評価し、これらの平均値によ って与えることとする。また、接合部コ ンクリートの有効高さは梁の応力中心間 距離に相当する。引張重心は引張側鉄骨 フランジとし、圧縮重心はコンクリート フランジが有る場合はその中央高さ、無 い場合は圧縮側フランジ位置とする。

以上をまとめると、本試験体の接合部 コンクリート有効体積は下式のように表 される。同式はコンクリートフランジが無 い場合、梁 S 造と全く同じ評価を与える。

$$_{c}V_{e} = \frac{2 \cdot _{C} b + _{B} b_{ave}}{4} \cdot _{B} j \cdot _{mC} d \tag{4}$$

ここで、Bbave:接合部四隅のコンクリー トフランジ平均幅、Bj:コンクリートフラ ンジを考慮した梁応力重心間距離である。

4.2 評価式の適合性

柱梁接合部周りの曲げモーメント(JM)は、 式(5)のように柱梁接合部の接点曲げモー メント(oM)で定義する[1]。

$${}_{J}M = (1 - {}_{B}j/H - {}_{mC}d/L)_{o}M$$
(5)

ここで、*H*:柱支点間距離、*L*:梁加力点 間距離である。

図4にSRC規準による式(1)に上述の接 合部有効体積を適用して求めた柱梁接合部 せん断耐力の計算値と最大耐力実験値の対 応を示す。ここで、帯筋比(wp)は梁面側の 接合部有効幅と有効高さに対する比率で与 え、ふさぎ板は帯筋比に換算するものとし た。ただし、直交梁がないSCC4ではふさ ぎ板の効果を無視した。同図より、計算値 は実験値を安全側に評価しており、特に SCC1~SCC3ではコンクリートフランジの 有無による耐力の差異を良好に表現できる

ことがわかる。

5. まとめ

梁鉄骨の上下に板状コンクリート部材を 有する RCS 架構の接合部せん断実験を実 施した。これらの接合部せん断耐力は、提 案した式(4)による接合部有効体積を用い ることにより良好に評価できた。 参考文献

- 日本建築学会:鉄骨鉄筋コンクリート構造計 算規準・同解説、2001
- [2] 田畑卓、西原寛:コンクリートフランジを有 するS梁とRC柱で構成される十字形柱梁接 合部の部分架構実験、安藤建設技術研究所報、 pp59-66、Vol.16、2010