繊維補強コンクリートを用いた鉄骨コンクリート部材の 構造性能に関する研究

その1 ひび割れ強度の検討

日大生産工(学部) 〇六田莉那子日大生産工 藤本 利昭

1. はじめに

 筆者らは,鉄骨鉄筋コンクリート(以下 SRC とする)構造の鉄筋を省略し,繊維補強コンクリ
ートを用いた鉄骨コンクリート構造(Concrete
Encased Steel Structure,以下 CES 構造とする。図
-1参照)の実用化に向け,構造性能の検討を行っている。

部材の構造性能の評価にあたっては,使用性, 耐久性,損傷制御の観点から,ひび割れ強度の把 握が重要である。

そこで本研究では、まず CES 構造に適用され る繊維補強コンクリート(以下 FRC とする)の ひび割れ強度を確認し、更に CES 部材のひび割 れ強度についての検討を行った。

2. ひび割れ強度の算定式

コンクリート系部材の曲げひび割れ強度式と しては、日本建築学会「鉄筋コンクリート構造計 算規準・同解説(以下 RC 規準とする)」¹⁾に次 の強度式が示されている。

一方, せん断ひび割れ強度に関しては, 日本 建築学会「鉄筋コンクリート造建物の靱性保証 型耐震設計指針(以下靱性指針とする)」²⁰に, 弾性理論のモールの応力円に基づく次式が示 されている。 $V_{SC} = \sqrt{\sigma_T^2 + \sigma_T \sigma_0} \cdot b \cdot D \cdot \frac{1}{\kappa} \dots \dots (2)$ ここで、 $\sigma_T : コンクリート引張強度$ $(\sigma_T = 0.313\sqrt{\sigma_R})$

図-1 CES 構造システム

Study on Structural Performance of Concrete Encased Steel Member using Fiber Reinforced Concrete — Investigation of Crack Strength—

Rinako ROKUTA and Toshiaki FUJIMOTO

σ₀:軸応力度

b:断面幅

κ:形状係数で矩形断面では1.5

本報告では、これらの式を対象に FRC ならび に CES 部材のひび割れ強度の検討を行った。

3. 繊維補強コンクリート(FRC)のひび割れ強度

3.1 実験方法

圧縮試験および静弾性係数試験は、「JIS A 1108 コンクリートの圧縮強度試験方法」および「JIS A 1149 コンクリートの静弾性係数試験方法」によ り、曲げ強度試験は、「JIS A 1106 コンクリート の曲げ強度試験方法」、割裂引張試験は、「JIS A 1113 コンクリートの割裂引張強度試験方法」に 基づき行った(図-2 参照)。試験体寸法は、圧縮 試験、割裂引張試験は 100 ¢×200mm、曲げ強度 試験は 100×100×400mm である。

試験体の一覧を表-1 に示す。試験体は,文献 3)~5)に示した実験に際して製作したものである。 FRC はベースコンクリート(普通コンクリート) にビニロンファイバーRF4000 を体積混入率で 1%混入して製作した。

3.2 実験結果

各試験結果の一覧を表-1に併せて示す。各試験 とも1調合当たり3本行い,表には各々の平均値 を示している。

圧縮試験より得られた応力-ひずみ関係の一 例を図-3に示す。表-1および図-3より,普通コン リートに繊維を混入すると,圧縮強度が若干低下 する傾向が認められるが,一方で圧縮靱性は向上 することがわかる。

曲げ試験から得られた曲げ強度-中央たわみ 関係の一例を図-4 に示す。普通コンクリートは, 曲げひび割れ発生により急激に強度が低下した。 一方 FRC は,曲げひび割れ発生後一旦強度が低 下するものの,その後の強度低下は緩やかであり, 曲げ靱性が向上することが確認された。但しFRC の曲げひび割れ強度は,普通コンクリートとほぼ 同等であった。

割裂引張試験では,普通コンクリートと FRC の割裂引張強度は表-1 に示すようにほぼ同等で

表-1 試験体一覧および実験結果

	-			_					
	種類	設計基準強度 F _C (N/mẩ)	材齡	圧縮強度 σ _B (N/mm)	ヤング係数 E _c (N/m㎡)	曲げ強度 σ _ь (N/mm ¹)	引張り強度 σ _t (N/mẩ)		
1	普通	26	074日	51.9	31461	7.2			
0	繊維補強	30	9740	45.4	31173	7.1			
2	普通	36	902日 49.3 28271		6.3				
3	普通		500 1	46.4	32548		3.2		
	繊維補強	27	200 H	46.4	30982		3.5		
4	繊維補強	07	36日	31.9	29985		2.8		
		21	174日	39.1	26972	6.1			
5	繊維補強	27	58日	31.7	27448	5.1	2.7		

3.3 FRC のひび割れ強度

2 章で示したひび割れ強度の算定式,(1),(2) 式は普通コンクリートを対象とした算定式であ ることから,本節ではこれらの式が FRC にも適 用可能であるかを検討した。

図-4 曲げ試験結果(表-1の①)

図-5 に圧縮強度と曲げ強度の関係 ($\sigma_b - \sqrt{\sigma_B}$ 関係)を示す。図中には、本実験データの他、文 献 6)~11)に示された普通コンクリート (ベース コンクリート) と FRC の材料試験結果も併せて 示している。

-58-

RC 規準式におけるコンクリートの曲げひび割 れ強度 $\sigma_b = 0.56\sqrt{\sigma_B}$ を実線で示すが,全てのデー タが $\sigma_b = 0.56\sqrt{\sigma_B}$ を上回っていることがわかる。 曲げひび割れ強度の実験値からコンクリートの ひび割れ応力度を計算すると,普通コンクリートの の 平均 値 が $\sigma_b = 0.79\sqrt{\sigma_B}$, FRC の 平均 値 が $\sigma_b = 0.97\sqrt{\sigma_B}$ であり,FRC のひび割れ強度が普通 コンクリートより高い結果となっているが,FRC の圧縮強度が普通コンクリートより若干低下す ることを考えれば,ほぼ同等と評価できる。以上 の結果から,RC 規準式の曲げひび割れ強度式 $\sigma_b = 0.56\sqrt{\sigma_B}$ によりFRC の曲げひび割れ強度支 全側に評価できるものと考えられる。

図-6 に圧縮強度と割裂引張強度の関係 ($\sigma_T - \sqrt{\sigma_B}$ 関係)を示す。図中には図-5 と同様に本実験 データと文献 6)~11)に示された普通コンクリートと FRC の結果を示している。

割裂引張強度に関しても、靱性指針におけるコ ンクリートのひび割れ割れ強度 $\sigma_T = 0.313 \sqrt{\sigma_B}$ を 実線で示すが、全てのデータが $\sigma_T = 0.313 \sqrt{\sigma_B}$ を上 回っていることがわかる。

曲げひび割れ強度と同様に実験によるせん断 ひび割れ強度からコンクリートのひび割れ応力 度を計算すると, 普通コンクリートが $\sigma_T = 0.44\sqrt{\sigma_B}$, FRC $m_{\sigma_T} = 0.50\sqrt{\sigma_B}$ であり, 普通コ ンクリートと FRC との差は僅かであった。これ らの結果から, 靱性指針式のひび割れ強度 $\sigma_T = 0.313\sqrt{\sigma_B}$ により FRC のひび割れ強度を安全 側に評価できるものと考えられる。

4. CES 部材のひび割れ強度

3章の検討により、FRC のひび割れ強度は、普 通 コンクリートを対象とした RC 規準式 $\sigma_t = 0.56\sqrt{\sigma_B}$, 靱性指針式 $\sigma_T = 0.313\sqrt{\sigma_B}$ の両式でほ ぼ評価できることが分かった。これらを踏まえて、 文献 12), 13)の実験結果に基づき、CES 柱の曲げ ひび割れ強度とせん断ひび割れ強度を検討した。

4.1 曲げひび割れ強度

CES 柱の曲げひび割れ強度の一覧を表-2 に,曲 げひび割れ強度の実験値と計算値の関係を図-7 に示す。

図-7 に示すように、CES 柱の実験における曲げ ひび割れモーメント(M_{cexp})は、RC 規準式による曲 げひび割れモーメント(M_{ccal})を概ね上回っており、 実験値と計算値との比(M_{cexp}/M_{ccal})は 1.28 であっ た。以上の結果から、CES 柱の曲げひび割れ強度 は、RC 規準式((1)式)により評価して良いもの と考えられる。

図-6 圧縮強度と割裂引張強度の関係

表-2 曲げひび割れ強度一覧^{12),13)}

A-2 面门のひ割れ速度 見															
		A2	B1	B2	B3	B3L	B3H	C2	D2	D3	R1	R2	R3	R4	R5
コンクリート強度	σ _B (N/mẩ)	43.9	43.2	43.9	44.7	43.6	45.0	42.7	42.2	42.4	33.0	26.9	32.5	33.0	33.0
作用軸力	N (kN)	800	400	800	1200	1130	1365	800	800	1200	50.0	50.0	50.0	50.0	50.0
コンクリート軸応力	$\sigma_0 = N/bD (N/mm^2)$	8.89	4.44	8.89	13.3	12.6	15.2	8.89	8.89	13.3	0.63	0.63	0.63	0.63	0.63
実験値	M _{cexp} (kN⋅m)	80.4	62.6	103	112	72.0	95.0	89.1	83.3	104	38.0	24.2	25.1	56.0	35.8
DC相進士	$\sigma_t (N/mm)$	3.71	3.68	3.71	3.74	3.70	3.76	3.66	3.64	3.65	3.22	2.90	3.19	3.22	3.22
RU规华式	M _c (kN∙m)	61.4	42.0	61.4	81.8	74.9	92.3	61.1	60.9	80.9	27.8	20.3	27.4	35.0	27.8

A-5 C/00100-0110度 見															
		A2	B1	B2	B3	B3L	B3H	C2	D2	D3	R1	R2	R3	R4	R5
コンクリート強度	σ _B (N/mẳ)	43.9	43.2	43.9	44.7	43.6	45.0	42.7	42.2	42.4	33.0	26.9	32.5	33.0	33.0
せん断ひび割れ発生荷重	_e V _C	275	202	326	343	277	431	415	415	385	106	113	130	93.3	188
せん断ひび割れ応力度	σ _τ	2.19	2.17	2.19	2.21	2.18	2.21	2.16	2.14	2.15	1.90	1.71	1.88	1.90	1.90
せん断ひぎ割れ強度	Vo	295	227	295	351	340	372	293	292	346	117	107	116	117	117

表-3 せん断ひび割れ強度一覧^{12),13)}

4.2 せん断ひび割れ強度

CES 柱のせん断ひび割れ強度一覧を表-3 に, せん断ひび割れ強度の実験値と計算値の関係を図-8 に示す。

図-8 に示すように、実験値と靭性指針式との対応は良く、実験値(V_{cexp})と計算値(V_{ccal})との比(V_{cexp}/V_{ccal})は1.09であった。以上の結果から、CES柱のせん断ひび割れ強度は、靱性指針式((2)式)により評価して良いものと考えられる。

5. まとめ

FRC の材料試験ならびに CES 部材の実験結果 の分析により、ひび割れ強度の検討を行った。そ の結果, CES 柱ならびに CES 柱に用いる FRC の 曲げひび割れ強度およびせん断ひび割れ強度は、 既往の式で評価できることがわかった。

参考文献

- 日本建築学会:鉄筋コンクリート構造計算規準・同 解説,2010
- 2) 日本建築学会:鉄筋コンクリート造建物の靱性保証 型耐震設計指針, 1997
- (3) 藤本利昭,小松博,櫻田智之:再生骨材コンクリートの合成構造への適用に関する研究 -中心圧縮性状-,日本建築学会技術報告集,第 35 号, pp.183-186,2011.2
- 4)藤本利昭,小松博,櫻田智之,師橋憲貴,三橋博巳: 薄肉鋼管で補強した鉄骨コンクリート合成柱の軸 圧縮性状,日本建築学会技術報告集,第 39 号, pp.565-570,2012.6
- 5) 藤本利昭,小松博,櫻田智:再生骨材コンクリート を用いた合成構造部材の曲げ性状,日本建築学会大 会学術講演梗概集, C-1分冊, pp.1309-1310, 2012.9
- 6) 山口敏和, 倉本洋, 山本直輝, 松井智哉, 北村俊也, 小林義信: CES 門形フレームで補強した RC フレー ムの静的および動的載荷実験, 第7回複合構造の活 用に関するシンポジウム, (CD-ROM), pp.39-1-8, 2007.11
- 7) 山口敏和,北村俊也,松井智哉,倉本洋:CESフレ ームを挿入した補強RCフレームの耐震性能に関す る基礎研究,コンクリート工学年次論文集,第29 巻,第3号, pp.1177-1182, 2007.7
- 8) 田口孝,神谷隆,倉本洋:材料特性の異なる FRC を用いた外付耐震補強工法における CES 補強柱の 構造性能,第8回複合構造の活用に関するシンポジ ウム,(CD-ROM), pp.52-1-6, 2009.11
- 9) 田口孝, 今村武大, 岩瀬勝洋, 松井智哉, 倉本洋: 2層2スパンCESフレームの構造性能に関する研究 (その1)実験および予備解析の概要, 日本建築学 会大会学術講演梗概集, C-1 分冊, pp.1269-1270, 2007.8
- 10) 深津尚人, 佐藤美郷, 廣瀬泰三, 芳賀亮祐, 田口孝, 神谷隆, 松井智哉, 倉本洋: CES 外付耐震補強フレ ームの開発研究(その4)補強 RC フレームの動的 載荷実験 実験概要と破断性状, 日本建築学会大会 学術講演梗概集, C-1 分冊, pp.1283-1284, 2007.8
- 11) 竹内博幸,中根博,村上秀夫,駿河良司,古川淳, 中出睦,谷垣正治:ビニロン繊維補強コンクリート の強度特性に関する基礎的研究(その1~2),日本 建築学会大会学術講演梗概集,A-1分冊,pp.479-482, 2002.8
- 12) 田口孝,神谷隆,倉本洋: CES 外付耐震補強フレームの開発研究 (その 11)CES 補強柱の耐震性能に及ぼす FRC 混入繊維種,内蔵鉄骨量およびせん断スパン比の影響,日本建築学会学術講演梗概集,C-1分冊,P.1151-1152,2009.9
- 13) 松井智哉, 溝淵博己, 倉本洋:H 型鉄骨内蔵 CES 柱の構造実験と FEM 解析, コンクリート工学年次 論文集, 第 32 巻, 第 2 号, pp.1171-1176, 2010.7