酸化物半導体を用いた pn 接合の作製と評価

日大生産工(院) ○小野瀬 匡彦 日大生産工 佐藤 敏幸、北野幸樹、新妻清純、清水 耕作、日秋 俊彦

1. はじめに

現在太陽電池の需要が高まってきている。太陽 電池はクリーンなエネルギー源である太陽光を 利用し、二酸化炭素を排出しない。近年広く普及 し、建物の屋根・壁などに設置され、また大規模 な設置型太陽電池のほかにも携帯用端末等の移 動体への電力供給源としての適用が考えられて いる。

今回、低温で成膜が可能な酸化物半導体・有機 半導体を用いた太陽電池の基礎検討を行った。透 明酸化物半導体は可視光を透過し、透明性をもつ ことから今まで利用できなかった建設物の窓や 自動車のフロントガラスなどへの応用が広がり、 太陽電池の需要拡大へとつながる。

本研究では n 型酸化物半導体 InGaZnO₄ と、同 じく酸化物半導体であり p 型の伝導性を持つ CuAlO₂を、ff マグネトロンスパッタリング法を用 いて成膜、ヘテロ pn 接合を試み透明太陽電池の 基礎検討を行う。

2. 実験方法

本実験で作製した pn 接合サンプルの作製法 を示す。裏面電極層に Cr を用い、ガラス基板(2cm ×2cm)上に抵抗加熱法によって堆積させる。その 後、Cr 電極上に n 型半導体である a-InGaZnO4 を、rf マグネトロンスパッタリング法を用いて堆 積させた。成膜条件は到達真空度 8×10⁻⁴ [Pa]以 下、成膜ガス圧 3[Pa]、Ar+O₂ガス(O₂: 5.0%)、 O₂ ガス 0.01[Pa]、成膜時間 60[min]とした。さら に p 型半導体 CuAlO₂を同じく rf マグネトロンス パッタリング法で a-InGaZnO₄上に堆積させ、pn 接合を形成した。CuAlO₂ ターゲットは、CuAlO₂ 結晶体を臨界状態で合成し、ステンレス基板上に塗 布・乾固させた。CuAlO₂の成膜条件は、到達真空 度 8×10^4 [Pa]以下、成膜ガス圧 6[Pa]、Ar+O₂ガ ス(O₂: 5.0%)、成膜時間 60[min] 。堆積させた CuAlO₂上に径 1[mm]の Cr 円形電極を蒸着、酸 化物ヘテロ pn 接合を形成した。Table 1 および 2 に成膜条件を示す。

測定は電流・電圧測定、Hall 測定を行い、導電 率・キャリア密度・移動度を算出、伝導型の確認 をした。なお測定は大気中・暗所にて行った。 作製したデバイス構造概念図を Fig.1 に示す。

Table 1 Deposition conditions of InGaZnO₄

condition	value
Ar+O ₂ (5.0%) Gas pressure [Pa]	3
RF power [W]	100
Time [min]	60
Vacuum degree [Pa]	8×10^{-4}

Table 2 Deposition conditions of CuAlO₂

condition	value
Ar+O ₂ (5.0%) Gas pressure [Pa]	4
RF power [W]	100
Time [min]	60
Vacuum degree[Pa]	8×10^{-4}

Manufacture and Evaluation of pn junction with Oxide Semiconductor

Masahiko ONOSE,Toshiyuki SATO,Koki KITANO,Kiyosumi NIZUMA, Kosaku SHIMIZU,Toshihiko HIAKI

Fig.1 Cross sectional view of the diode

3.結果·考察

3-1. p · n 型半導体単膜

rf マグネトロンスパッタリングによって堆積し た CuAlO₂、InGaZnO₄ 薄膜の電流・電圧特性を Fig.2 に示す。整流特性は見られず、各半導体と も Cr に対してはオーミック性接触であることを 示している。a-InGaZnO₄、a-CuAlO₂の導電率は それぞれ 3.23×10^{-4} [S/cm]、 3.93×10^{-4} [S/cm]と なった。a-InGaZnO₄の Hall 測定の結果を Fig.3 に、a-CuAlO₂の結果を Fig.4 に示す。Hall 測定 条件は、温度 T=300[K]、磁東密度 B=1.0[T]とし た。上記の条件で成膜した a-InGaZnO₄ 薄膜は n 型半導体であることを確認し、算出したキャリア 密度は n=1.55×10¹⁴[cm⁻³]となった。a-CuAlO₂ 薄膜は p 型半導体であることを確認し、キャリア 密度は p=2.79×10¹⁵[cm⁻³]となった。Table.3,お よび.4に InGaZnO₄、CuAlO₂の基礎物性を示す。

Tał	ole.	3	\mathbf{E}	lectrical	pro	perties	of	a	In	Ga	Zn	0	4
-----	------	---	--------------	-----------	-----	---------	----	---	----	----	----	---	---

Electrical properties	value			
Electrical conductivity [S/cm]	$3.23 imes 10^{-4}$			
Carrier density [cm ⁻³]	$1.55\! imes\!10^{14}$			
Hall mobility [cm/Vs]	1.34			

Electrical properties	value
Electrical conductivity [S/cm]	3.93×10^{-4}
Carrier density [cm ⁻³]	$2.79 imes 10^{15}$
Hall mobility [cm/Vs]	0.88

Fig.2 I-V characteristics of a-InGaZnO4, a-CuAlO2

Fig.3 Hall voltage of a-InGaZnO₄

3-2. a-CuAlO₂/a-InGaZnO₄接合

InGaZnO₄-CuAlO₂ 接合の電流・電圧特性を Fig.5 に示す。順方向バイアスを印加したときで は電流が指数関数的に増加することが確認でき た。また、逆方向バイアスを印加したとき電流値 が一定となり良好な整流性が見られ、今回作製し た a-InGaZnO₄ と a-CuAlO₂の接合はダイオード

Fig 4 Hall voltage of a-CuAlO₂

Fig 5 I-V characteristics of a-InGaZnO₄ / a-CuAlO₂ junction

特性が得られた。

今回成膜した a-CuAlO₂、InGaZnO₄は Cr に対し てオーミック接触を示した。n型、p型ともに同種 の金属に対しては、空乏層が形成されず接合は整流 性を示さない。今回作製したデバイスは整流性を示 した。これは半導体間にショットキー障壁が形成さ

Fig 6 Temperature dependence of a- InGaZnO₄/ a-CuAlO₂ junction

れたことによると考えられる。

a-CuAlO₂、InGaZnO₄の膜と金属界面に準位が多数 あり、トンネリングによってオーミック性を示した のではないかと考えた。

Fig.6に pn 接合の温度特性を示す。温度上昇とともに電流値の増加を確認した。

a-InGaZnO₄/a-CuAlO₂界面に不純物や構造欠陥が形成する再結合中心が多く、これらを考慮に入れたデバイス設計が求められる。

成膜した CuAlO₂ 薄膜の状態も若干の褐色をし ており完全な透明半導体とはならず、 O_2 分量の過 多による CuO、Cu₂O 層が形成されている可能性 が考えられる。しかし、今回作製した酸化物 pn 接合は、CuAlO₂の p 型半導体としての良質な膜 の形成で、さらなる特性の改善が期待できる。

Fig.7 に暗状態と光照射時の電流・電圧特性を示 す。光照射時では逆方向電流が発生しており、暗 状態の I-V カーブが下方向にシフトしている。こ のことから a-InGaZnO₄/a-CuAlO₂ 接合界面に空 乏 層 が 形 成 さ れ て い る と 考 え ら れ る。

Fig 7. I-V characteristics of a-InGaZnO₄ / a-CuAlO₂ junction

また、無バイアス・光照射によって発生した逆方 向電流密度は、16.56×10⁻³[mA/cm²]となった。

3. まとめ

今回 a-InGaZnO₄、a-CuAlO₂を用いて作製した
 pn 接合デバイスは良好な整流性が確認され、太
 陽電池としての基礎特性が確認できた。

半導体単膜の観点からは、CuAlO₂の良好な膜 の形成がこの特性改善の重要な項目であり、rfス パッタリング法による a-CuAlO₂の機能の向上・ 透明性を目指すため、ターゲット状態の改善、O₂ ガスとの相関性の検討を行い化学量論の組成に 等しい薄膜作製が求められる。また、a-InGaZnO₄、 a-CuAlO₂のキャリア密度の向上を、酸化物にお いて重要である酸素量から検討していく。

pn 接合デバイスの観点からは a-InGaZnO4/a-CuAlO2 接合界面の詳細なバンド プロファイルを行い、各半導体のフェルミレベル、 半導体/金属界面の評価を行っていく。また、同条 件での成膜を行い、再現性のとれるデバイスであ るかの検討を行う。 今回光照射によって発生した光電流は微小で あったが、有用な発電システムを目指す上で、キ ャリア収集効率、集光効率、単膜の基礎特性向上 を検討し太陽電池デバイスとしてより詳細な評 価を行う。

謝辞

本研究の一部は、双葉電子工業株式会社の支援 を受けて行われました。ここに深謝いたします。

参考文献

- 1) 鯉沼 秀臣 酸化物エレクトロニクス p31, (2001)
- 2) S.M.Sze, Semiconductor devices physics and technology
- 川副博司,高橋志郎,折田政寛,NED0 H11 年 度提案公募事業成果報告会予稿集
 97S06-002
- 4) 小長井 誠,薄膜太陽電池の基礎と応用
 -環境に優しい太陽光発電の新しい展開-