パルス YAG レーザによる A5052 と純 Ti, 純 Cu および Mg 合金の異材溶接性

1. 緒言

アルミニウムおよびチタンはいずれも軽量で比強 度が高く,無毒の金属材料であり,優れた耐食性を 有している.これらの特性を生かしてアルミニウム 合金は自動車,鉄道車両,船舶など輸送分野,チタ ンおよびその合金は航空機,海水淡水化装置,熱交 換器など過酷な環境下で使用されている¹⁾.近年地 球温暖化の観点から製品の軽量化をはじめとして, 部品の多様化や高機能化などが図られ,用途は拡大 する傾向にある.さまざまな用途によって材料を使 い分けるためには異材接合が必要不可欠である.

本研究ではパルス YAG レーザ溶接で純チタンとア ルミニウム合金の突合せ溶接を行い,継手の強度向 上を目的として適正溶接条件の選定を行った.得ら れた継手の組織および成分分析よりその溶接性を検 討した.また,同様にアルミニウム合金とマグネシ ウム合金および純銅の溶接性についても検討した.

2. 供試材および実験方法

供試材には板厚 0.6 mm の純チタン 2 種(TP340C), および A5052 アルミニウム合金, 1.0 mm の AZ31 マ グネシウム合金, 1.0 mm の無酸素銅(C1020), 0.4 mm のタフピッチ銅(C1100) を長さ 100 mm, 幅 50 mm に加工して使用した(以後それぞれ Ti, A5052, AZ31, C1020, C1100 と称す).本研究室では Ti と A5052 の重ね溶接性について研究し,アンダーフィルによ る継手強度の低下が認められた²⁾.このアンダーフ ィルを防ぐため A5052 は端部を L 字加工し,**Fig.1** に示した形状, 寸法とした試験片について検討した. 溶接直前に供試材の突合せ部周辺を研磨後,ブタノ ンで脱脂洗浄した.溶接装置は,最大平均出力 550 W (最大パルスエネルギー70 J)のパルス YAG レーザ 溶接機を使用し,溶加材なしの I 型突合せ溶接を圧 延方向と直角に行った.レーザへッドは,供試材か

らの反射光を避けるために後退角20°とした. 焦点 距離80 mmの集光レンズを使用し, 焦点位置はA1 側に0.2 mm オフセットした. アシストガスおよびバ ックシールドガスはAr ガスを使用し, レーザヘッド 内のガス置換を20 s 以上行った. 良好な外観が得ら れた継手のビード外観および組織観察を行い, 継手 溶接部の成分分析をした. また, 温室で引張試験, 破面観察及び硬さ試験を行った. 引張試験は JIS 13B 号試験片に準じ作成し, 試験後の破面観察を走査型 電子顕微鏡 (SEM) によって行った.

溶接条件を表す1つの指標としては溶接速度とパルス周波数を一元化し、ビームスポットの重なり状態を示すオーバーラップ率(以後,0Lと称す)を用いた.0Lが10~30%でのTiとA5052の突合せ溶接条件をTable1に示す.

日大生産工(院) 〇戸村 和弘 日大生産工 朝比奈 敏勝

Fig.1 Shape and size of specimen.

Laser output		LO(W)	500
Pulse width		PW(ms)	2.0, 4.0, 6.0
Pulse frequency		FR(Hz)	20, 30, 40
Welding speed		V(mm/min)	588~1512
Over lap rate		OL(%)	10~30
Gas flow rate	Assist	GA(l/min)	25
	Backing	GB(l/min)	25

3. 実験結果および考察

3.1 溶接条件の選定

ビード外観に及ぼす溶接条件の影響を Fig.2 に示 す.図に示す基準よりビード外観の良否を目視によ って判定した.ビード表面に欠陥が認められず,さ らにパルス形状の良好な継手を(Very Good),欠陥 が認められない継手を(Good),溶落ちが数か所認 められ,形状がやや不安定な継手(Poor),溶落ち によってビードが形成できない継手を(Bad)に分類 した.ただし,パルス幅が 2.0 ms のビード外観に及 ぼす 0Lの影響は装置の仕様限界を超えたため実験 を行なうことができなかった.

Pulsed YAG Laser weldability of Al alloy, pure Ti, pure Cu and Mg alloy sheets. OKazuhiro TOMURA Toshikatsu ASAHINA A5052とTiの突合せ溶接を行ったところ溶落ちが 生じ、溶接が不可能であった.そこで、A5052をL 字加工し溶接を行った.溶接可能範囲はパルス幅 2.0,4.0 msec ともに0Lが10~20%以内であった. また、パルス幅が2.0 msec では広い範囲で溶接が 可能であったのに対して、4.0 msec では溶接可能範 囲は狭いもののビード外観が良好であった.溶接速 度の遅い条件(588~756 mm/min - 20 Hz - 25J)で は入熱量が過大なため、溶落ちが生じ接合が不可能 だった.一方、溶接速度が速い条件(1176~1512 mm/min - 40Hz - 13J)では入熱量が小さく、L字部 分が残留して接合することができなかった.中間の 溶接速度 882~1134 mm/min、パルス周波数 30Hz、入 熱量17Jの条件では0Lが10~20%以内であれば良 好なビードが得られた.

3.2 組織観察

OL 17%の溶接条件には 50 µm以上が 4 個, 49 µm以 下が 6 個の球状ブローホールが A5052 側に生じてい る. A5052のみが溶融して Ti に覆い被さり,中心部 では A1 と Ti 両者の溶融が認められた. 成分分析の 結果,酸素の偏析が認められないことから酸化物は 存在しないものと考える.

3.3 引張特性

引張試験結果を Fig.3 に示す.溶接条件に関係な く全継手は A5052 側母材部で破断した.なお,A5052 の引張強さは 252 MPa である.0L 18 %の条件では 197 MPa で A5052 に対して継手効率は 78 %と良好な 値が得られた.また,引張強さ,伸びともにパルス 幅 2.0 msec の条件が良好で安定した値を示した.引 張試験後の破断部近傍の外観および破面の SEM 観察 から伸びの大きかった 0L 16,17,18 %では板幅お よび板厚方向にわずかに収縮して破断し,延性破面 の特徴であるディンプルが観察された.

3.4 硬さ特性

マイクロビッカース硬度計(試験荷重:0.49 N, 荷重保持時間:15 s)によるヌーブ硬さ試験を行っ た.硬さ試験の測定点は溶融凝固部中心から0.2 mm の間隔で左右に4.0 mmまでの板厚中央部を測定した. 硬さ試験結果をFig.4に示す.Tiの平均硬さが122 HK, A1 が 67.3 HK であるのに対して,溶融凝固した部分 は 504 HK を示し硬化していた.このことから Ti と A1 の二元系状態図より TiAl₂, TiAl₃が金属間化合物 として存在していると考えられる.また,熱影響部 の硬さは溶融凝固部ほどではないが母材に比較して やや硬化する傾向が認められた.硬さ試験の結果か ら金属間化合物層の幅が小さいため化合物は強度に 影響を与えないと考えられる.

3.5 A5052 と AZ31, C1020 および C1100 の異材溶接

A5052とAZ31の突合せ溶接は板材,L字材ともにビ ード外観の良好な継手を得ることができたが、引張 試験片作成中に溶接部から破断したものが多かった. A5052とC1020およびC1100の突合せ溶接は銅の熱 伝導性,反射率が良いことから熱を吸収しないため 溶融が困難で接合が不可能であった.そこで,相手

Fig.4 Hardness distributions of welded joints.

材を溶融することによって接合する方法を検討し, 現在はA5052をL字加工し溶融することで形状的に は良好な継手を得ることができた.しかし,両継手は 接合界面に金属介在物が生成されているため脆く, ほとんど強度がない結果が得られた.

5. 結言

パルス YAG レーザ溶接により A5052 と相手材を変 えて異材溶接を行った結果,次の結論を得た.

- 継手形状および溶接方法を変えたことにより アンダーフィルによる強度低下を防ぐことが できた.
- 2) A5052とTiの異材溶接では引張強さ197.4 MPa, 伸び 2.03%であり, A5052の引張強さに対して 78.5%と良好な継手が得られた.
- 3) A5052とAZ31およびC1100の異材溶接では良好なビード外観が得られる条件を選定することができたが、金属間化合物により十分な強度を得ることができなかった。

参考文献

- 藤井秀樹,高橋一浩,山下義人,"新日鉄技報", 2003,62
- 2) 渡邊汗,朝比奈敏勝, "パルス YAG レーザによ る純 Ti/A5052 の重ね溶接性に及ぼすインサー ト材の影響",溶接学会全国大会講演概要, 2008,98-99