高速四極電磁石とRFKOを使ったビーム取り出し法のビーム特性

日大生産工 放医研 中西哲也

古川 卓司、野田 耕司

1 まえがき

シンクロトロンからのビーム取り出し方法 として、高速四極電磁石とRFKO機器を使った 方法を提案した¹⁾。この方法は、断続的に少 しずつビームを取り出すもので、高速四極電 磁石(PQ)でセパラトリクスを瞬間的に僅か に縮めてビームを取り出し、その後、減少し た周回ビームのエミッタンスをRFKOにより元 の大きさに拡大する。特徴として、高速でビ ームON/OFFを制御できる、電磁石電源のリッ プルを補正できる等が挙げられ、粒子線照射 や出射のタイミングを正確に制御する必要の ある物理実験等への適用が考えられる。

前回、放医研HIMACシンクロトロンを使って 行った原理実証について報告した。今回の報 告では、RFKOの信号源として、FM信号やホワ イトノイズを使った場合の出射ビーム特性に ついてビーム試験結果を報告する。

2 高速四極電磁石と RFKO 装置を使っ たビーム取り出し法 (QAR 法)の概要

QAR法のアウトラインを図1および図2に 示す。ビーム加速の後、シンクロトロンの主 パラメータは従来の1/3共鳴出射法の初期状 態の値に設定される(図1(a))。ユーザ側か らのスタート信号によりPQが励磁され、セパ ラトリクスが収縮を始める。そして、セパラ トリクスを出た粒子が取出される(図1(b))。 必要な粒子数が取り出されると、ユーザ側か らストップ信号が送られ、PQ磁場はゼロに戻 され、セパラトリクスが元の大きさに広がる ことによりビーム取出しは停止する(図 1(c))。

Fig.2 QAR法のタイミングチャート

その後、RFKOがonされ、周回ビームが拡散され、取出されたビームが存在していた領域を 埋める(図1(d))。このように、PQとRFKOを 交互に運転することにより、断続的に少しず つビームを取出すことができる。

Characteristics of extracted beam from a synchrotron using a pulse Q-magnet assisted by RF-knockout

Tetsuya NAKANISHI, Takuji FURUKAWA and Koji NODA

以上のように本QAR法はPQの動作により取出し を行うため、次のような特徴を持つ:(1)必要 なタイミングで必要な量のビームを精度良く取 り出すことができる、(2)待機時にシンクロト ロンの主電磁石電源のリプル等によるビーム出 射を抑制できる、(3)取り出し中のビーム強度 は、スピルフィードバック制御により一様になる ことが期待できる。(2)(3)の特徴は、主電 磁石電源のリプル許容値を緩和できるためコス トが低減できる。一方、本取出し法はセパラトリ クスの大きさを変えるため、出射中にビーム位置 変化が生じる。しかし、一回の取出し量が少ない ため、その変化は小さい。補正する場合でも、変 化量が小さいためHEBTに空芯のステアリングコ イルを設置して、PQのコイル電流に同期して運転 することで、比較的容易に補正できると考える。

3 実験結果とディスカッション

3.1 実験装置

実験条件を表1に示す。HIMACシンクロトロン は繰り返し周期が3.3s、フラットトップが2sで運 転される(C、400MeV/u)。ビームスピルはプラ スティックシンチレータ(厚さ0.2mm)とフォト マル(含プリアンプ)からなるビームスピルモニ タで測定した。

表1. Experimental conditions

Beam	: C^{6+} 400MeV/n
Bare tu	n:: 3.6865/3.130
f _{RF}	: 6.6118 MHz: Longitudinal RF freque
f_{rev}	: 1.6530 MHz: Revolution frequency
V_{RF}	: ±4 kV: Longitudinal RF voltage
f_s	: 1.46 kHz: Frequency of synchrotron osillation
$\mathbf{f}_{\mathbf{k}}$: 1.1197 - 1.1323 MHz: Transverse RF frequency
ξx	: -1: Horizontal chromatic

RFKOシステムの信号源としては、FMの場合ファン クションジェネレータ(HP3314A)が用いられ、 1.1197MH z から1.1323MHzまで直線的に約1.3ms で掃引した。掃引開始周波数は常に同じ値であ る。カラードノイズ信号源としては、ホワイトノ イズ源と帯域フィルタを用いて作った。これらの RF信号の出力時間はゲート信号で制御され、アン プで増幅後、キッカー電極に送られる。

PQは、HIMACシンクロトロンでチューン補正に 用いている一組の積層型四極電磁石(QDS)を使 った。真空チェンバーは3mm厚のSUS304である。 コイル電流は、ファンクションジェネレータで三 角波を発生させ、アンプで増幅してコイルに導い た。

3.2 ビーム実験

図3はビーム取り出しの全体像である。取り出し機器はフラットトップで1.6s間運転した。FQと RFKOの運転周期は20msである。RFKO信号は、 周回ビームの残存率を減らすためにAM変調している。また、運転時間は1.3ms、即ち掃引回数は

ー回である。RF加速空洞はoffしてい る。図4は出射開始から0.8s後を拡大し たもので、図5は1.4秒後である。PQのコ イル電流波形は常に同じで、電流最大の 時にセパラトリクスは初期状態から半分 まで収縮する。その後、セパラトリクス は初期状態に戻され、ビームエミッタン スがRFKOにより拡散される。従って、ス ピル信号が出始めるコイル電流値から、 拡散後の最外周のビームエミッタンスが 計算できる。この値は、一定であること が望ましいが、出射開始1.4s後では大き く変化することが分かる。これに対して、 RFKOの信号源をカラードノイズとした結 果を図6に示すが(実験日は異なる)、 変化は非常に小さい。

4 結論

周回ビームを拡散するRFKO信号源とし てFM変調信号とカラードノイズ信号を使 って実験した結果、拡散幅はカラードノ イズを使うとほぼ一定値が得られること が分かった。

1) T. Nakanishi, T. Furukawa, K. Yoshida, and K. Noda, "Slow beam-extraction method using a fast Q-magnet assisted by RF-knockout", Nucl. Instr. and Meth. A553 (2005) 400-406.