摩擦撹拌プロセスによった 7075 アルミニウム合金の組織および 機械的性質に及ぼす後熱処理の影響

1.緒言

摩擦搅拌接合(Friction Stir Welding:FSW) はアルミニウム合金を始め とした板材の接合に航空機,自動車産業な どに幅広く使用されるようになり,研究報 告も増加傾向にある. FSW は接合部が撹拌 により微細な組織になることはよく知ら れている¹⁾.この微細化現象は摩擦撹拌プ ロセス(Friction Stir Processing:FSP) として組織の微細化法として注目され,研 究も増加傾向にある²⁾.しかし,アルミニ ウム合金ではFSWおよびFSPともに施工時 に摩擦発熱を伴うため, 撹拌部周辺に軟化 が生じる³⁾. このため強度を維持するため には施工後の熱処理に関する検討が必要 と考えるが,施工後の熱処理に関する研究 は少ないのが現状である.

本研究では、アルミニウム合金中最も高 強度の7000系合金である7075アルミニウ ム合金を用いて FSP を行い、FSP 材の組織 および機械的性質に及ぼす後熱処理の影 響について検討した.

2. 供試材および実験方法

供試材には 7075 アルミニウム合金板 (T6 材,板厚 5.0mm)を幅 50mm,長さ 200mm

日大生産工(院)	〇浅野	真弘
日大生産工	加藤	数良

に機械加工して用いた.供試材の機械的性 質を Table1 に示す.FSP には FN-II 型摩擦 撹拌接合機を使用し,予備実験より選定し た Table2 に示す条件を組合わせて行った. 後熱処理は FSP 材を溶態化処理(753K× 15min. ~水冷)の後,人工時効(393K× 24h)の T6 処理とした.回転工具には炭素 工具鋼(SK105)製を使用し,ショルダー径 20mm,プローブは M6 左ネジ,長さ 4.9mm に機械加工し,工具回転方向は時計回りと した.

得られた継手の外観観察,組織観察,硬 さ試験および接合方向と平行に撹拌部を 平行部とした JIS13 号 B 試験片(平行部幅 12.5mm,厚さ 4mm)による引張試験をいず れも室温で行った.

Table1 Mechanical properties of base metal.

Tensile strength	Elongation	Hardness
(MPa)	(%)	(HV0.1)
594	12.2	188

Table2 Friction stir processing conditions.

Rotational speed	Ν	(rpm)	1000,1500
Welding speed	V	(mm/s)	0.5,1.0,1.5,20
Tilt angle	θ	(deg.)	3.0
Preheating time	t	(s)	30

Effect of Post Heat Treatment on Structure and Mechanical Properties of 7075 Aluminum Alloy by Friction Stir Processing Masahiro ASANO and Kazuyoshi KATOH

(b) Post heat treatment

5mm

Fig.1 Macrostructures of joint.

(V=1.5mm/s)

3. 実験結果および考察

Fig.1 に継手横断面の巨視的組織を示す. 全条件で撹拌部にはオニオンリングが観 察され, AS 側に比較して RS 側に張り出す 傾向にあった.FSPのままでは、撹拌部と その周辺熱・機械的影響部 (Thermo-Mechanically Affect Zone: TMAZ) および熱影響部(Heat Affect Zone:HAZ) が明瞭に観察されるが、熱処理により TMAZ および HAZ はほとんど母材部と識別 できなくなったが, 撹拌部は明瞭に識別で きる状態にあった.また撹拌部は工具回転 数1500rpmに比較して1000rpmが小さかっ た.

Fig.2 に継手横断面撹拌部中央部の微視 的組織を示す.後熱処理の有無に関係なく 撹拌部は母材部に比較して微細な組織と なった. 撹拌部の組織は熱処理することに より微細となった.この傾向は工具回転数 が小さくなるのに伴い明瞭となった.

Fig.3 にチンマー法により求めた継手横 断面撹拌部中央部の結晶粒径を示す.熱 処理前、熱処理後のいずれでも接合速度 の増加に伴い結晶粒は微細なものとなり, 工具回転数 1500rpm に比較して工具回転

10 µ m

Base metal Fig.2 Microstructures of joint.

(V=1.5mm/s)

数 1000rpm がより微細であった. また全 条件で後熱処理により結晶粒は微細とな り,工具回転数 1500rpm でこの傾向は明 瞭であった.実験の範囲内では工具回転

数 1000rpm, V=2.0mm/s の条件が 3.6μm と最も微細となり,これは母材の約 13% の値であった.

Fig.4 に継手横断面板厚中央部における 硬さ分布を示す.FSP まま材は 7075 合金 の時効硬化を考慮し,接合後 30 日経過後 に測定した結果である.全接合条件でFSP まま材には撹拌部に軟化が認められ、ショ ルダー外周に相当する位置に軟化域が認 められた.最軟化部が認められた位置は工 具回転数 1500rpm の条件で撹拌部中心よ り離れた位置となった.後熱処理材ではシ ョルダー部の軟化域は消滅しており,撹拌 部での硬化が認められた.撹拌部の硬化割 合は工具回転数 1500rpm に比較して工具 回転数 1000rpmが大きくなった.

Fig.5 に引張試験結果を示す.FSP まま 材は,工具回転数 1000rpm では接合速度 1.0mm/s 以上で引張強さの差はほとんど 認められず一定値を示し,母材の約 86%の 値であった.後熱処理材は接合速度の大小 による差異はほとんど無く母材と同等の

引張強さが得られた.伸びは FSP まま材は 引張強さと類似の傾向を示し,母材の約 149%の伸びが得られたが、後熱処理により 若干低下した.このことは, 撹拌部の組織 が母材に比較して微細となったことによ るものと考える.工具回転数 1500rpm では, 引張強さは全条件で工具回転数 1000rpm と同様に後熱処理により向上するが,工具 回転数 1000rpm の条件に比較して低い値 であった. また, 工具回転数 1000rpm に比 較して接合速度の影響は小さくなる傾向 にあった. 試験片の破断は FSP まま材は組 織の影響を受けたと考えられる凹凸の多 い破面であったが,後熱処理材は引張軸に ほぼ垂直に破断するものが多く観察され た.

参考文献

- 1) 例えば,時末 光: FSW(摩擦撹拌接合)の基礎と応用,日刊工業新聞社, (2005),63.
- 2) 例えば, 斉藤尚文, 権湧宰, 重松一典: まてりあ, 43 (2004) 9, 592.

 3)例えば,加藤 数良,時末 光,伊藤 源:軽金属溶接. 41(2003),230.