1. はじめに

パーソナルコンピュータ(PC)をはじめとして近年 の計算機の性能向上にはめざましいものがあるが,一 方で演算クロック周波数の限界もいわれており,最近 ではマルチコアによる CPU が多く出回ってきている.

数値流体力学の分野においても,こうした並列化技 術を併用した計算を活用していかなければ,高速化は 望めないと思われる.筆者らはこうした考えのもとに, PCクラスタをはじめとするメモリ分散型並列計算機 に対する並列化手法として,領域分割法による並列計 算や,メモリ共有型並列計算機に対するOpenMPに よる並列計算を行ってきた^{[1],[2]}.特に領域分割法は 単に高速化を図るだけでなく,大規模な記憶容量を使 用する点でも有効な手法である.

本研究では、このような大規模な計算向けた並列計 算手法に関して、複雑な形状を有する流れ場や、高レ イノルズ数域における乱流計算を行うための並列化 有限要素法による乱流計算の適用性について検討を 行う.その数値計算例として、乱流計算のベンチマー ク問題として知られる平行平板間乱流(チャネル乱 流)に対して、Galerkin 有限要素法による LES 解析 に対する OpenMP を用いた並列計算で検証を行う. さらに、大規模な計算を必要とする高レイノルズ数域 (*Re* = 140,000)における円柱周り流れに対して、指 数関数型 Petrov-Galerkin 有限要素法を用いた陰解法 に基づく LES 解析の領域分割法の適用を試みる.

2. LES 基礎方程式及び,有限要素スキーム

無限長を想定した円柱周り流れ問題を考える上で, 非圧縮性粘性流体を仮定した運動方程式及び連続の方 程式から,LESを基にしたフィルターを施し,次の フィルタリングされた支配方程式を得る.

$$\frac{\partial \overline{u}_i}{\partial t} + \overline{u}_j \frac{\partial \overline{u}_i}{\partial x_j} = -\frac{\partial \overline{P}}{\partial x_i} + \left(\frac{1}{Re} + \nu_t\right) \frac{\partial^2 \overline{u}_i}{\partial x_j^2} \tag{1}$$

$$\frac{\partial \overline{u}_i}{\partial x_i} = 0 \tag{2}$$

 ν_t は, Smagorinsky モデルによりモデル化され, Van Driest 型の壁面減衰関数を併用する.運動方程式及び 連続の式に対する計算のアルゴリズムにはフラクショ ナルステップ法を用いる.空間の離散化には,有限要 素法に基づく離散化を行う. 都立産技高専 三浦 慎一郎

本研究では高レイノルズ数域を対象とした乱流場を考 えるため,高精度な上流化手法を与える必要がある. そこで本手法では,空間の離散化に関して指数関数に よる重み関数を用いた指数関数型 Petrov-Galerkin 有 限要素法による有限要素スキームを構成する.指数関 数型重み関数は次式により表される^{[3],[4]}.

$$M_{\alpha} = \sum_{\gamma,i} N_{\alpha} e^{-a_i (N_{\gamma} x_i^{\gamma} - x_i^{\alpha})} \tag{3}$$

ただし,

$$a_i = \frac{\alpha_i}{|L_i|} sign(\hat{u}_i) \qquad (no \ sum \ on \ i) \tag{4}$$

ここで N_{α} では双 1 次補間関数を用いるものとし, さらに式 (3) に表れる α_i は上流化の割合を示すスケーリングパラメータである.

3. 数值計算例

3-1. 平行平板間流れの LES 乱流解析

壁面摩擦速度 u_{τ} 及び平行平板間長さの半値 δ を代 表値としてのレイノルズ数 $Re_{\tau} = 180$ における平行 平板間の LES 乱流解析を行う.LES におけるサブグ リッドモデルは標準 Smagorinsky モデルを用いる.数 値計算法として,空間に関する離散化は Galerkin 有限 要素法(流速,圧力共に双1次補間),時間に関する離 散化は2次精度 Adams-Bashforth 法を用いる.ただ し,壁面方向の物理粘性項にのみ Crank-Nicolson 法 による陰解法を用いる.連続の式と運動方程式との計 算のアルゴリズムには,フラクショナルステップ法を 用いる.壁面方向に関する連立方程式のソルバーは, 対角スケーリング付きの共役勾配法(CG 法)で残差 のL2 ノルムは $\epsilon = 10^{-12}$ とし,圧力ポアソンにおけ るソルバーは,対角スケーリング付き共役残差法(CR 法)で残差のL2 ノルムは $\epsilon = 10^{-3}$ とした.

計算領域は Kim らの DNS による計算を参考に,主 流方向 x_1 , 垂直方向 x_2 , スパン方向 x_3 にそれぞれ $4\pi\delta$, 2δ , $(4/3)\pi\delta$ とする.ポアソン方程式に対する行 列の格納方法は,スカラー計算機を用いる場合にはキ ャシュ効果が期待できる CRS(Compressed Row Storage)形式,ベクトル機を用いる場合には,対角成分の長 さをベクトル長に取ることのできる CDS(Compressed Diagonal Storage) を用いる^[5].

Large Eddy Simulation of Turbulent Flows with a Finite Element Method and Domain Decomposition Method

Shinichiro MIURA

有限要素メッシュは, 32×64×32, 64×64×64, 128×64×128とした.壁面方向の分割は変えず,主 流方向,スパン方向のみ解像度を変えて計算を行う.

このとき,壁面方向最小メッシュ幅はいずれのケースでも $\Delta x_2^+ = 1$ としている.時間刻み幅は $\Delta t = 5.0 \times 10^{-4}$ で行った.

統計データの算出は,流れが充分発達した時刻の流 れ場を作成し,それぞれのメッシュに応じて補間を行 い,無次元時間20(40000ステップ)行ったのちに, 無次元時間20(40000ステップ)のデータにより算出 した.

Fig. 1: Time averaged mean velocities of channel flow

図1の結果から,粘性低層内 (y⁺ < 10) では,いず れのケースでも DNS^[6] との良い一致が見られてるが, メッシュ解像度が低いほど,流速が増大していること が分かる.これらの結果は,差分法を用いた場合と同 様の傾向を示している.

計算コストは,128×128×128の場合,NEC SX-7 による1ノード16CPUを用いた場合で,1ステップ あたり約0.37秒である.このときのベクトル演算率 は,入出力を含めて99%を超えている.最も計算時 間の掛かる行列ベクトル積(CDS形式の格納)の部分 は99.3%,1.7Gflopsであり,計算機のピーク性能値 (8.8Gflops)の約20%である.

3-2. 円柱周り流れの LES 乱流解析

本手法を高レイノルズ数域での円柱周り流れに適用 する.計算領域を図2に示す.Breuer^[7]は,スパン 方向長さ1D,2D, π Dの長さで検討を行っているが, それによるとスパン方向の長さによる影響は大きいと 考えられるため,本研究ではスパン方向長さは4Dと する.境界条件は円柱上はノンスリップ条件,流入速 度は代表流速として主流方向に一様な流れを与え,流 出条件は自由流出とする.スパン方向は周期条件を課 し,垂直方向境界においてはスリップ条件を与える.

数値計算法として,時間積分には主流方向及び,垂直 方向成分の対流項に対しては2次精度Adams-Bashforth 法,物理粘性項に関してはCrank-Nicolson法を用いる. スパン方向には対流項,拡散項共に2次精度Adams-Bashforth法による時間積分を行う.Crank-Nicolson 法を用いた場合の有限要素方程式を用いる.数値計 算法の詳細については,文献 [2] に従う.また,ポア ソン方程式に対する行列の格納方法は,スカラー計 算機を利用することから,CRS 形式を用いる.並列

Fig. 2: Computational domain

(a) 8分割

(b) 32 分割

Fig. 3: METIS による領域分割

化のアルゴリズムは,領域分割法に基づく並列化を 行う.領域分割方法は,フリーソフトウェア Mitis に 従い小領域に分割される(図3).その際,小領域間 のデータ交換方法は要素のオーバーラップからデータ

の交換を行う手法を採るが, Metis ではオーバーラッ プ領域となる要素情報が得られないため,入力の際 にそのオーバーラップとなるデータ交換部(マスター とスレーブの節点)を与えて,計算中に小領域間の データ交換を行う.これらのプログラムには MPI で 行い, この交換部分の MPI 命令は Isend と Irecv によ る非ブロッキング通信を用いる.計算機は, PC クラ スタ (Intel PentiumD, 3.0Ghz, 4 ノード 8CPU)ま たは, IBM eServer p595 (8CPU または 16CPU)を 用いた. Reynolds 数を 140,000 とし, 2 つのメッシュ により計算を行う.円柱に対して周方向128分割,半 径方向に 72 分割とした.スパン方向分割に関しては 60(mesh1) と120(mesh2) のものを用いる. mesh1 で の総要素数 766,080,総節点数 793,427, mesh2 での 総要素数 1,532,160,総節点数 1,573,847 である.最小 メッシュ幅は $2.66 imes 10^{-3} (\approx 1/\sqrt{Re})$,時間刻み幅を 1.0×10⁻³ として計算を行う.本手法では SGS モデ ルに含まれる Smagorinsky 定数及び,指数関数型重 み関数に含まれるスケーリングパラメータ α_i が含ま れる.これらのパラメータの依存性を調べるために, いくつかのケーススタディを行う.表-1にそれらをま とめる.

Table 1: Several cases of Smagorinsky number andScaling number

Case	Cs	α_i
Case A1	0.10	0.10
Case A2	0.10	0.25
Case A3	0.17	0.10
Case A4	0.17	0.25
Case A5	0.17	0.50
Case B1	0.17	0.25

スパン方向の平均及び時間平均を取った統計データ により,実験データと比較する.統計データの算出は, 充分流れの状態が発達したと判断される時刻から無次 元時間60により算出した.

主流方向流速成分の分布を実験値と比較した結果を 図4に示す.ここで,上流かの割合を示すスケーリン グパラメータの違いによる計算結果の差異がほとんど 見られないことから,代表的なケースでの結果を図示 する.いずれのケースで,実験値と良好な一致をして いることが分かる.このことから各種パラメータ,ス パン方向へのメッシュ解像度の影響は,流速に関して は影響していないことが分かる.

表-2 に円柱後流における循環渦長さ L_r ,抗力係数 C_D ,円柱背圧値 $C_{P_{back}}$,ストローハル数Stをまとめ る.表-2 の L_r の比較から,再循環領域が実験値に比 べてやや大きい結果となっている.抗力 C_D との比較 から Case B1を除いて,全体的に低い値となっている. 背圧値 $C_{P_{back}}$ は,剥離位置で起こる圧力分布に大き な差異が見られることが原因であると考えられる.ス

Fig. 4: Mean velocities

Table 2: Integral parameters at time domain

Case	L_r	C_D	$C_{P_{back}}$	St
Case A1	0.62	0.56	-0.43	0.23
Case A2	0.51	0.60	-0.41	0.19
Case A3	0.61	0.69	-0.52	0.21
Case A4	0.50	0.74	-0.49	0.21
Case A5	0.59	0.73	-0.48	0.17
Case B1	0.53	0.93	-0.66	0.17
Exp. ^[2]	0.44	1.237	-1.21	0.179

トローハル数 St はほぼ実験値に近い値となっている.

4. まとめ

並行平板間乱流問題に対して, OpenMP を用いて 並列計算を行い流速分布の統計量を DNS と比較した. その結果,差分法と同様に,解像度が低いと流速成分 が大きくなる結果が得られた.また,ベクトル化率, 並列化率も良好であり,高速化が可能であることが示 された.

円柱周り流れ乱流問題に対して,指数関数型 Petrov-Galerkin 有限要素法に基づく上流化スキームを用い て,Re = 140,000における円柱周り流れの LES 計算 を行った.また,上流化効果を適切に取り入れるため に運動方程式に対しても陰解法を用いた.さらに,大 規模な計算を行うために領域分割法に基づく並列計算 を行った.そこでいくつかの見解が得られた.

- 円柱後方における流速に関しては定量的な一致が 見られ、スパン方向成分の分割数の影響やスマゴ リンスキー定数の影響も小さいことが分かった。
- 1. 乱流強度に関しては,スパン方向分割数による 影響が見られた.また,主流方向及び垂直方向成 分に関しては,実験データとの差異が見られた.
- 抗力に関して、実験と比べると過小評価される 傾向にあったがスパン方向の分割数の影響が見 られ、分割数を増やすことで改善された結果が

Fig. 5: 乱流強度分布

得られた.

 4. 上流化の割合を示すスケーリングパラメータを 0.1,0.25,0.5として与えたが,流速,乱流強度 に関してほとんど差異が見られなかった.しか し,スマゴリンスキーモデルの値(0.1と0.17) に大きく影響を受ける結果となった.

今後の課題として,圧力分布の実験データとの差異 から剥離位置付近におけるメッシュ解像度の影響が考 えられるため,今後これらの影響について考察する必 要があると思われる.

謝辞

本研究におけるベクトル並列計算機の利用は,東北 大学情報シナジーセンターにおける平成18年度共同研 究「領域分割型並列化有限要素法によるLES乱流解析 に関する研究」により行われた.また,本研究で使用 した計算機の一部は,九州大学情報基盤センターにお ける高性能演算サーバ(IBM eServer p5 モデル595) 及び,東北大学情報シナジーセンター所有のスーパー コンピュータ(NEC SX-7及びSX-7C)を利用した.

参考文献

- (1) 三浦慎一郎,並列化有限要素法に基づく陰解法 を用いた円柱周り流れのLES 乱流計算,九州大 学情報基盤センター 広報全国共同利用版,6, No.1,2006(掲載予定)
- (2) 三浦慎一郎,水内衛,角田和彦,有限要素法を 用いた円柱周り流れの LES 乱流解析,計算工学 講演会論文集, pp.277-280, 2006-6.
- (3) Kakuda, K., Tosaka, N. :Finite element approach for high Reynolds number flows, *Theoretical and Applied Mechanics*, Vol.41, pp.223-232, 1992.
- (4) Kakuda, K., Tosaka, N. Nakamura, T.:Finite element analysis for 3-d high Reynolds number flows, *Int. J. Comp. Fluid Dyns.*, Vol.7, pp.163-178, 1996.
- (5) 長谷川 里美,長谷川 秀彦,藤野 清次 訳,反 復法 Templates,朝倉書店,1996.
- (6) Moin, P. and Kim, J., Numerical inversigation of turbulent channel flow, J. Fluid Mech., 118, 341-377, 1982.
- (7) Breuer, M., A challenging test case for large eddy simulation: high Reynolds number circular cylinder flow, *Int. J. of Heat and Fluid Flow*, Vol.21, pp.648-654, 2000.
- (8) Cantwell, B., Coles, D. :An experimental study of entranement and transport in turbulent near wake of a circular cylinder, J. of Fluid Mech., Vol.136, pp.321-374, 1983.