FRP 製塩酸貯蔵用タンクの腐食事故解析

東工大工 酒井 哲也 日大生産工 大野 茂 東工大工 久保内昌敏 東工大工 津田 健

1. はじめに

繊維強化プラスチック(FRP)は金属材料と 比べて比強度が高く,酸・アルカリといった腐 食性の高い環境に対して耐久性が優れている ことから,様々な産業分野で用いられており、 特に過酷な化学薬品を扱う化学工業で多く用 いられている¹⁾. しかし,近年 FRP 製化学装 置において亀裂の発生や、ピンホールなどによ る内容物の流出等の事故が発生しており、なか には死亡事故に至るケースも報告されている. したがって,強度低下を予測し,寿命推定に基 づく安全設計が必要である.これまで, FRP の劣化に関する研究は加速試験による短時間 で得られたデータについて議論されたものが 多く、化学装置として長期使用する際の劣化損 傷データは十分に存在していないのが現状で $barble a^{2}$.

本研究では実際に化学プラントにおいて,塩酸貯蔵用タンクの天板上(Fig.1 参照)で作業中,天板が崩壊しその中に転落した事故によって,使用が中止され,さらに,廃棄された耐食FRPについて分析を行い,その直接的原因を解析し,事故の背景について考察する.

2. 分析対象および評価方法

2.1 分析対象サンプル

約10年間35wt%塩酸貯蔵用として使用した タンクからFig.1に示したように崩落した天板 部,側面上部,側面下部の3箇所から分析用サ ンプルを採取し,さらにこれらを後述する各試 験用に合わせた形状に切断した.

タンクの構造は塩酸と直接接する面(耐食層)はマトリックスとしてビスフェノール系ビ ニルエステル樹脂をチョップドストランドマ ットの形状をしたガラス繊維で強化した FRP が用いられていた.

2.2 評価方法

評価方法は内外表面および切断面の外観観 察を行い,断面については走査型電子顕微鏡 (SEM)により観察し,同時にエネルギー分散 型 X線分析(EDS)による材料内部に存在す

る元素分析を行った.さらに,FRPの機械的強度を測定する目的で3点曲げ試験(JIS K 7055) を行った.

3. 分析結果

3.1 強度試験結果

天板部,側面上部および側面下部それぞれの 最大曲げ強度を測定した結果を Fig.2 に示し, 比較のため JIS K 7012 の保持強度推奨値 (137MPa)も同一図に示した.塩酸と接して いる下部側面部に比べて,上部の方が低下の度 合いが大きい.したがって,強度低下に起因す る因子は塩酸溶液よりも塩酸蒸気の可能性が 大きい.さらに,全ての部分において JIS K 7012 の推奨値と比べて小さいことから,事故

Corrosion accident analysis of FRP tank for hydrochloric acid

Tetsuya SAKAI, Shigeru ONO, Masatoshi KUBOUCHI and Ken TSUDA

HCI

<u>Upper cover</u> Fig.4 EDS analysis of FRP cross section.

HCI Lower side Fig.3 Photographs of cross section of FRP tank.

以前に寿命は終了しており,特に崩壊した天板 部は 20%程度の強度しか保持していないこと がわかる.

3.2 外観変化

Fig.3 は天板部,側面上部および側面の断面 写真を示したものであるが,大気中側は緑色で あったのに対し,塩酸と接していた面は茶褐色 に変色し,肉厚は上部に行くほど薄く,茶褐色 部分が広くなっていることが観察された.さら に,天板部における茶褐色の層はもろく,容易 に剥離できるほど,劣化の進行が確認できた.

3.3 塩酸の浸入とガラス繊維の劣化

天板部の断面を SEM および EDS により元素 分析した結果を Fig.4 に示した. 白色部はガラ ス繊維であり、接液面に対して外側のガラス繊 維にはガラスの成分である Si と Ca が多く検出 された,しかし,接液面近辺では外側と同様の Si 元素が確認できるが, Ca 元素はほとんど検 出されなかった.次に,FRPに存在するはずの ない Cl が内部から検出された.つまり,塩酸 がFRPの内部まで浸入していることがわかり, さらに、このClの浸入深さは天板部が約5mm, 側面上部が約 3mm となっており,上部に行く に従い深く浸入していたことも確認された.な お、この浸入深さは前述の茶褐色に変色した範 囲とほぼ一致している.さらに,側面上部に比 べて,天板部の繊維の部分において,繊維-樹 脂間の剥離が顕著に確認できた.

以上の結果から、特に天板部の劣化が顕著で あったことから、FRP内部に塩酸蒸気が浸入す ることによって、ガラス繊維中のCa成分が溶 出し、樹脂-繊維界面に剥離を生じる.FRP の強度は樹脂よりも繊維の影響が大きく、さら にFT-IRによって樹脂の化学的変化を分析し た結果、変化は生じていなかったことから、樹 脂-繊維界面の剥離によってFRPタンクの強 度を低下させたものと考えられる.

4. 考察

事故が発生したタンクの設計寿命は10年を 目安として考えられていたが 事故発生前まで は流出等は無く健全な装置と考えられてきた ため,装置のメンテナンス・更新等は検討され ていなかった.しかし,前述したとおり,腐食 が進行し、特に天板部におけるガラス繊維の劣 化は顕著であり、人の体重程度で崩壊する強度 となっていた .事故に至ってしまった原因とし て,材料の選定,施工および設計等のミスが考 えられる.例えば,塩酸と接する面の樹脂は十 分な厚さが確保されずに繊維が露出していた 可能性や,マトリックスのビニルエステル樹脂 は耐食性の良い材料と考えられてきたが,実際 の使用環境下では溶出等の劣化が生じた可能 性もある.しかし,使用前の厚さなどの検査の データは無く証明は出来ない.さらに,設計寿 命は加速試験等によって得られたデータから 推測されたものであり,実際の使用環境下との 整合性が無かった可能性もある.

5. 結論

このような事故を未然に防ぐために,近年, 装置の更新に伴い,廃棄される FRP が多く存 在し,また,頻繁する事故により設計寿命より も早く使用を中止する場合がある.これらの装 置について劣化の程度等を評価・検討し,さら にこれまで得られた加速試験データとの整合 性を確認する必要がある.また,外部から測定 困難な装置に関しては非破壊検査による評価 が必要であり,施工後(使用前)の確認,使用 中の保全を徹底すべきである.

「参考文献」

1)化学工学会化学装置材料委員会 有機材料 分科会編,

化学装置用有機材料資料集 「化学装置用 有機材料実績データ集」,(2001)

2)亀井将弘,仙北谷英貴,久保内昌敏,津田健;"耐食 FRP 製化学装置における材料の劣化解析",48th FRP CON-EX 2003 講演会 講演要旨集 pp.102-103