TV画像のフラクタル解析

1. はじめに

最近、公共の場や医療現場、あるいは民間企業などにおいても、犯罪・事故・災害などの状況を迅速に把握するため、監視用カメラの導入が積極的に行われている。この場合、複数のカメラから送られてくるTV画像を、監視員が常時確認し続ける必要があるため、かなりの労力と時間を必要とする。また、個人のプライバシーに関わるような場合、監視そのものを断念させるを得ない事も考えられる。一方、TV画像を定量的に解析することが可能となれば、前述の問題点は解決される。従って、より効率的な監視作業が行えることになる。

これまで著者らは、実在する市街地の航空写真からグレースケール画像を作成し、そのフラクタル解析を行うことで、市街地の構造の変化を定量的に表現することができ、市街地の形態分類や、変化領域の抽出を行うことを報告している（710）～（713）。本研究では、TV画像（動画）を一定の時間間隔でサンプリングし、デジタル静止画像を得る。次に、それらのフラクタル解析を行うことで、TV画像の定量的な解析ができるか検討する。具体的には、Webカメラ（1）の前を人間が歩く様子を撮影し、その状態を精密に検出できるか検討を行う。また、本手法の監視システムへの応用の可能性についても検討する。

2. 解析法

図1 撮影方法の概略図

図1に、撮影方法の概略図を示す。撮影環境をできるだけ同一に保つため、撮影は夜間、蛍光灯下で行った。また、被験者の背景をできるだけ一様にするため、撮影場所は、本学百周年記念講堂の廊下とした。Webカメラと背景（廊下の壁）との距離は約3[m]とし、背景が歪まないように、Webカメラの撮像面と背景が平行になるように設置した。

表1は、使用したWebカメラ（Logicool社 Qcam Ultra Vision QVU-13）の仕様を示す。

<table>
<thead>
<tr>
<th>Webカメラの仕様</th>
<th>倍率</th>
<th>色</th>
<th>カメラセンサー</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>130万画素CMOSセンサー</td>
<td>画像解像度</td>
<td>VGA (640×480 [pixel])</td>
</tr>
<tr>
<td></td>
<td></td>
<td>レンズ</td>
<td>焦点距離非公表 開放F値1.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>フォーカス</td>
<td>固定焦点式</td>
</tr>
<tr>
<td></td>
<td></td>
<td>フレームレート</td>
<td>最大30 [fps]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>動画エンコーダ</td>
<td>ソフトウェアによる</td>
</tr>
<tr>
<td></td>
<td></td>
<td>動画の保存</td>
<td>Windows Media Video (wmv)</td>
</tr>
</tbody>
</table>

Study on the fractal analysis in the television image

Yuto NAKAMURA, Takashi KUROIWA and Mitsuhito MATSUBARA
図2 画像の解析範囲

図3 被験者の写真

図4 画像特微距離の変化（被験者Aが右から左に移動した場合）
図4は、被験者Aが右から左に移動した場合の画像特徴距離dの変化を示す。また、図同様のグレースケール画像は、それぞれフレーム数が(I)～(IV)における画像を示す。同図より、グレースケール画像の左端に被験者の姿が映り始めから全体が映るまで((I)→(II)の区間)、dは、ほぼ直線的に増加することがわかる。また、全体が映った状態((II)→(III)の区間)では、dに顕著な変化はみられないが、画像の右端から被験者の姿が見えなくなるまで((III)→(IV)の区間)、dは、ほぼ直線的に減少することがわかる。ここで、(I)→(II)あるいは(III)→(IV)の区間において、dの変化が直線的なののは、被験者がほぼ一定の速度で歩いたためと考えられる。また、(IV)の画像において、d=0とならないのは、蛍光灯の明るさの変動や、窓から入射する外光の影響によるものと思われる。

図5は、被験者Aが左から右に移動した場合の画像特徴距離dの結果である。
図4の場合と移動する方向が逆であるが、各区間(1)→(2)、(2)→(3)、(3)→(4)において、dの変化に顕著な違いは見られなかった。

図6は、被験者A,B,Cによる画像特徴距離の違いを比較した結果である。同図(a)は被験者が右から左に移動した場合で、(b)は被験者が左から右に移動した場合を示す。被験者が異なる場合でも、dの変化はほぼ同じであることがわかる。被験者Aの場合について、dの値が若干小さいのは、被験者B,Cに比べて身長が5cm程度低いためと考えられる。

図7は、被験者が一名(Aのみ)、二名(AとB)、三名(AとBとC)の場合について、同様の解析を行った結果である。被験者が複数名の場合、被験者他士の間隔は、約1[m]とした。同図より、被験者の数が増すとdの値は大きくなり、その変動も大きいことがわかる。一方、移動する方向に対しては、顕著な変化は見られなかった。

4. まとめ

Webカメラの前に人間が歩く様子を撮影したTV画像(動画像)から、各フレームにおけるグレースケール画像(静止画像)を作成し、そのフクラスクタル解析を行うことによって、画像特徴距離dを求めた結果、画面内にある人間の動きを検出できる可能性もあることがわかった。即ち、人間が移動すると、dに顕著な変化がみられる。また、画面内にある人の数が増すと、dは大きく変化することがわかった。今後、本手法を用いた監視システム実現を目指して、さらに詳細な検討を行う予定である。

参考文献