アイソグリッドで補強されたCFRP円筒殻の圧縮特性評価

日大生産工(院) 〇岸谷 直美

日大生産工 邉 吾一

作した.シリコーン型の両端はヘリカル方向の溝 部分が継ぎ目になるようにし、また型を固定する ための穴をあらかじめ開けて成形した(Fig.2). ただしメス型のシリコーン型の製作は、Fig.1中の 太実線の部分を用い、Fig.2の太実線に沿って接着 させて行なった.

Fig.1 Aluminum Isogrid Mold

Fig.2 Silicon Rubber Mold

2.2 成形

Filament Winding 装置でCFRP円筒殻の成形を 行なった. φ90のマンドレルを用意し,そこに先 ほどのシリコーンゴム型を巻きつけて溝に沿って ネジで固定した(Fig.3).両側に設けたガイドピ ンは,マンドレルの外側からネジを入れ,周方向 に等間隔に並べたもので成形時に繊維をガイドす るために使用した.材料は作業効率を上げるため に,あらかじめ樹脂が含浸された三菱レイヨン㈱ 製の一方向炭素繊維トウプレグを用いた.

まずアイソグリッド円筒殻の補強材となる部分 から成形した.補強材はフープ方向とヘリカル方 向から構成されており、繊維は溝に沿ってヘリカ ル方向とフープ方向を交互に積層した.ヘリカル 方向とフープ方向ともに6plyしたところで溝は満 たされた.続けて、表面層の成形に入った.表面 層は、型の上から補強材と一緒に巻いて、厚さは 2plyとした(Fig.3).表面層のフィラメントの巻き 角は90°(周巻き)と60°の2通りとした.

Fig.3 Filament Winding Process of Isogrid Cylindrical Shell

Evaluation of Compressive Property of CFRP Cylindrical Shell Reinforced with Isogrid

Naomi KISHITANI and Goichi BEN

1. 緒言

アイソグリッド構造とは、正三角形の格子状の 補強材とごく薄い表面層からなる、軽量かつ高剛 性な軽量薄肉構造で、主に航空宇宙分野で用いら れている.現在ロケットの燃料タンクに使われて いる金属製のアイソグリッド構造を用いた円筒殻 を形成するには、まずAl合金製の厚板から正三角 形の格子状補強材となる部分を残して薄板になる まで削り出しを行う.その平板を円弧状に曲げ加 工を施し、それらを溶接して円筒殻を形成してい る.このようにアイソグリッド構造を金属材料で 形成するには、材料の使用効率が悪く、製造工程 が多い.加えて接合工程を要するために、接合部 で強度的に不安定になることが考えられる.

本報告では比強度・比剛性に優れた炭素繊維強 化プラスチック(CFRP)を用いて,CFRPアイソグ リッド円筒殻の一体成形技術の開発を行なった¹⁾²⁾. さらに,CFRPアイソグリッド円筒殻の静的軸圧縮 試験を行い,補強効果を確認し,その圧縮特性の 評価を行うと共に,FEM解析の結果と実験との比 較・検討を行なった.

2. 成形方法

2.1 型の製作

CFRPアイソグリッド円筒殻を成形するために 金型を用意した(Fig.1).金型の寸法は縦193mm, 横314mmで,さらに幅2mm,深さ3mmでアイソグ リッドの格子状に溝が彫られてある.正三角形の 頂点となる交差点は、2つの斜め方向(円筒殻では ヘリカル方向)と1つの水平方向(円筒殻ではフー プ方向)の3方向からの交差となり,繊維を積層す る際に、その部分だけ他の補強材と比べて厚みが3 倍となり、応力集中の原因となる.そのため、水 平方向の溝を交差部から微少量ずらしてオフセッ ト部を設けた.このことで補強材の交点の厚みが 極端に増すことを防いだ³⁾.

この金型の溝と同じ幅で高さが6mmのプラスチ ック棒を金型の溝にはめ込みオス型を製作した. このオス型にシリコーンゴム(信越シリコーン KE-1414)を流しこみ,幅2mm,深さ3mmのアイソ グリッドの溝を持つシリコーンゴムのメス型を製

補強材と表面層を巻き終えたら、硬化炉で130℃、 1時間で硬化させて脱型した. 脱型は、まずマンド レルに設けたガイドピンを取り外し、マンドレル から硬化した円筒殻をシリコーン型ごと脱型する. 次に,円筒殻の内側からシリコーン型を取り外し, 円筒殻を形成していない部分を切断した.

成形品をFig.4(a)(b)に示す.マンドレルに巻く際 のシリコーン型の継ぎ目がヘリカル方向の溝部分 になるように工夫したことで、継ぎ目の無いアイ ソグリッドCFRP円筒殻を成形することができた.

Fig.4 (a) CFRP Isogrid (b) Inside of Cylindrical Shell Isogrid Cylindrical Shell

3. 軸圧縮試験

3.1 試験体・試験条件

CFRPアイソグリッド円筒殻とCFRP円筒殻を用 いて,静的軸圧縮試験を行った.試験体は,表面 層の巻き角90°と60°のCFRPアイソグリッド円筒 殻をIsogrid90°, Isogrid60°とし, 補強材のない CFRP円筒殻をNon-isogrid90°, Non-isogrid60°とし 比較し、補強効果を確認する. さらにIsogrid90°を 長く成形したIsogrid90° longの5タイプとした. 試験 体寸法の平均値をTable 1に示す.

試験機にはオートグラフを使用し, 球座式圧盤 を用いて試験体に荷重が均等にかかるようにした. 試験体端部はGFRPで補強し,端部割れを防いだ. ひずみゲージは、軸方向の中央で表面層の180°対 称な位置に直交ゲージを2つ, Fig.5に示すように円 筒殻内部の補強材に単軸ゲージを5つ,計9chで計 測した. 負荷速度は0.5mm/minとした.

Table 1 the Average Size for Test Specimens

	Isogrid			Non-isogrid	
Winding Angle of Skin	90°long	90°	60°	90°	60°
Shell Length/mm	203.1	137.5	135.1	139.0	138.4
Inner Diameter/mm	108.8	108.5	110.8	110.0	110.4
Plate Thickness/mm	0.9	0.8	0.6	0.9	0.7
Stiffener Width/mm	1.9	2.0	2.2		
Stiffener Hight/mm	2.3	2.5	3.2		-

3.2 破壞様相

Isogrid90°・Isogrid60°共に、2つの補強材間での 剥離が観察された(Fig.6).そのため、更なる接 着強度の向上を図る必要がある.

Isogrid90°の破壊は、まずオフセット部で剥離が 起こり、その時の荷重が著しく低下するが、表面 層は破壊に至っていないため、その後もある程度 の荷重を維持し続けたと考えられる. 最終的には, 周方向に亀裂が入り全体の形状が変形した.

Isogrid60°についても同様のことが言えるが、こ の場合は荷重を加え続けると円筒殻内側に向かっ て凹変形を起こした(Fig.7).しかし,除荷後は 元の形状に戻ったことから、弾性座屈を起こした ことがわかる.またこの弾性変形は, Non-isogrid60° も同様に起こった.

Isogrid90° longは、補強材の交差する点で破断し ている(Fig.8).

Fig.6 Delamination Failure at Offset Point in Isogrid90° Cylindrical Shell

Fig.7 Buckling Deformation of Isogrid60°Cylindrical Shell

Fig.5 Location of strain gages

Fig.8 Delamination Failure of Isogrid90° long Cylindrical Shell

3.2 荷重 – 変位(ひずみ)関係

Isogrid90°とNon-isogrid90°,およびIsogrid60°と Non-isogrid60°の試験結果をFig.9(a)(b), Fig.10(a)(b) にそれぞれ示す.ただし, Isogrid60°・Non-isogrid60° のひずみは座標変換後し、繊維方向と同直角方向 の値を示す.

Isogrid90[°]とNon-isogrid90[°]の荷重は,どちらも線 形的に上がっていき,最大荷重で著しく低下した. その後,補強材のあるIsogrid90[°]の荷重は,

Non-isogrid90°の最大荷重付近の値を維持し続けた が、Non-isogrid90°の荷重は、ほぼゼロまで低下し ている.Isogrid60°とNon-isogrid60°も90°巻き同様、 初めは線形的に荷重が上がっていったが、最大荷 重に達した後は、徐々に下がっていく挙動を示し た.またIsogrid60°の荷重低下後も90°巻き同様、 Non-isogrid60°の最大荷重付近を維持した

以上のことから、CFRPアイソグリッド円筒殻は、 補強材が破壊に至った後、表面層でその荷重を維 持しているということが考えられる.また、60°巻 きの破断ひずみが、90°巻きのものより小さいこと から、Isogrid60°とNon-isogrid60°は、座屈破壊を起 こしたものと考えられる.

Isogrid90° longの試験結果をFig.11(a)(b)に示す. Isogrid90° と比較すると、その最大荷重は、10kN程 度低くなっている.またIsogrid90°と同様、その荷 重は最大荷重で著しく低下するという挙動を示した.

Fig.11 Results of Isogrid90° and Isogrid90°

4. 解析

4.1 解析モデル

試験結果を検討するため,汎用有限要素プログ ラムANSYSver9.0を用いてIsogrid 及びNon-isogrid CFRP円筒殻の固有値座屈解析を行なった.解析モ デルは表板,補強材とも積層シェル要素を用い, Fig.12(a)に示すように1/2対称モデルとした.(b)は その拡大図である.また表面層は三角形シェル要 素,補強材は四角形シェル要素で要素分割し,試 験片を端部補強したGFRP層もモデル化した.材料 定数は各々のカタログ値を用いた.

4.2 解析法

ANSYS ver9.0の解析法にはブロックランチョス 法と弧長法がある. ブロックランチョス法が荷重 増分に追従して計算されていくのに対し, 弧長法 は変位増分に追随して計算される. 今回は, 計算 時間を比較的短くすることのできる手法がいくつ かあるブロックランチョス法を用いて解析を行な った.

4.3 初期不整值

円筒殻の圧縮試験では、試験時の境界条件や初 期不整などが座屈荷重に大きく影響する⁴⁾と言わ れている.そこで,線形座屈解析で固有座屈モードを求めた後,形状初期不整値としては,板厚の数%の値を最大値とし,一次の固有モードの形状で解析に導入し,非線形座屈解析を行なった.

この初期不整値を調整して実験結果との比較検 討を行なった.その結果,現段階では初期不整量 を板厚の5%として行なった計算で,実験値から算 出した弾性率との良い一致を得られた.

次に示す解析結果は、いずれも初期不整量を板 厚の5%とした結果である.

4.4 解析結果

圧縮試験による最大荷重の結果とFEMによる座 屈荷重の結果をFig.13(a)(b), Fig.14(a)(b)及びTable 2 に示す.いずれもFEMの線形座屈値に比べ,実験 値のほうが40%以上小さな値を示している.しかし 初期不整を考慮した非線形解析による座屈荷重は 実験結果に近づいた.

Fig. 12 FEM Model (Isogrid Cylindrical Shell)

(a) Experimental and FEM Results for Non-isogrid90°

Fig.13 Comparison of Load - Displacement Curves

(b) Experimental and FEM Results for Non-isogrid90 Fig.14 Comparison of Load – Displacement Curves

Table 2 Comparisons of Experimental Results with FEM ones

	Linear Buckling Non-linear Buckling		Experimental	
	Load(kN)	Load(kN)	Value(kN)	
Non-isogrid90°	40.6	28.2	14.5	
Isogrid90°	79.7	46.0	37.8	
Non-isogrid60°	41.4	22.0	13.9	
Isogrid60°	60.3	40.6	30.7	

5. 結言

アイソグリッドCFRP円筒殻の軸圧縮試験を行 なうことによって、補強効果を確認した.円筒殻 の内側をアイソグリッドで補強したことによって、 補強材が荷重の多くを受け持つため、補強効果に 大きく寄与しているということを明らかにした. さらに、成形時において補強材、及び表面層の接 着性を向上させることによって更なる補強効果が 期待できる.

FEMによる非線形座屈解析の結果は、実験結果 と近づくことを示した.しかし、解析時の計算と の安定性を考慮すると、解析法を弧長法へ転換す るなどして更なる検討を重ねる必要がある.

謝辞

真円度測定にご助言とご指導をいただいた千葉 産業技術支援研究所の方々に感謝の意を表します. また,カーボントウプレグを提供して頂いた三菱 レイヨン(㈱西本様に感謝の意を表します.

参考文献

- 追, 荻野:第37回日本大学生産工学部学術 講演会,機械部会講演概要,2005年,pp65-66
- 邉,岸谷:第48回構造強度に関する講演会 講演集,2006年,pp162-164
- Thomas D. Kim : Composite Structure 49 , (2000) , 21-25
- 林 毅:軽構造の理論とその応用(上),日科 技連(1966),pp315-329