日大生産工 登坂 宣好

1. はじめに

構造物が大型化し,それを構成する部材数 も莫大な物となるに従い,構造物の保全や安 全を確保する上で損傷部材やその損傷度合 を非破壊検査的に明らかにすることが益々 必要になってきた.最近では構造物のヘルス モニタリング技術が進展してきたので,この 貴重なヘルスモニタリングデータから非破 壊的に構造物の損傷を同定できるシステム の提案とその構築が求められている.

そのような状況に対応すべく,構造物のヘルスモニタリングデータから構造物の損傷 同定を行うには,ノイズを含んだ計測データ を補助情報量とした逆問題の解析という計 算力学的アプローチが考えられる.

その際,ノイズを含んだ実測量を対象とす るので構造物の力学的挙動に基づく確率ダ イナミックシステムを構築し,その逆問題と しての同定解析を行うための逆解析法¹⁾が構 築できれば,それによって同定結果を求める ことができる.このような逆解析法として確 率ダイナミックスのフィルタリングアルゴ リズムによる同定解析システム²⁾を構築して きた.本論文では,同定解析システムによる 塔状トラス構造物³⁾およびフレーム構造物⁴⁾ を対象とした構造損傷同定解析を示す.

$$\mathbf{y} = \mathbf{m}(\mathbf{z}) + \mathbf{v} \tag{1}$$

$$\widetilde{\mathbf{z}} = \mathbf{b}(\mathbf{y}) \tag{2}$$

ただしzは状態ベクトル(未知),yは計測ベ クトル(既知),υはノイズベクトル,mは システム作用素, žは推定ベクトル,bは推 定作用素とする.

ここで式(1)のノイズベクトルを確率変数 ベクトルとして取り扱うことにし,式(2)の線 形推定を与えることにすると次のようなzの 線形推定ベクトルžが与えられる.

$$\widetilde{\mathbf{z}} = \overline{\mathbf{z}} + \mathbf{B} \{ \mathbf{y} - \mathbf{m}(\overline{\mathbf{z}}) \}$$
(3)

ただしzはzの期待値ベクトル,Bはbの線 形化された推定行列となる.式(3)を用いてz の線形推定量を求めるには,フィルタリング アルゴリズムとしての線形推定量に対する 次の逐次解法が有効である.

$$\widetilde{\mathbf{z}}_{k/k} = \widetilde{\mathbf{z}}_{k/k-1} + \mathbf{B}_k \{ \mathbf{y}_k - \mathbf{m}(\widetilde{\mathbf{z}}_{k/k-1}) \}$$

$$(\widetilde{\mathbf{z}}_{0/-1} = \overline{\mathbf{z}})$$
(4)

上式の推定行列 \mathbf{B}_k は z とその推定量 $\tilde{\mathbf{z}}$ に 関する近似度を与える評価基準に対応した フィルタを採用することによって具体的に 構成できる .その代表的なものが Wiener フィ ルタに基づく Kalman フィルタである . その 他の例として射影フィルタ族 (射影フィルタ とパラメトリック射影フィルタ) がある .

Structural Damage Identification Analysis by Filtering Algorithms

Nobuyoshi TOSAKA

3. 構造損傷同定解析

軸力による応力伝達機構を有する構造物 としてトラス構造を,曲げおよびせん断応力 による応力伝達機構を有する構造物として フレーム構造物を例に構造損傷同定解析を 行うに当たり,Wienerフィルタ,射影フィル タおよびパラメトリック射影フィルタに基 づくフィルタリングアルゴリズムを逆解析 手法とする逆問題を構成する.

3.1 構造モデル

損傷同定解析の対象とする塔状トラスモ デルを Fig.1(a)に,またフレームモデルを Fig.1(b)に示す.本研究では損傷を剛性の低下 として定義することにより,塔状トラスモデ ルでは1部材が損傷により剛性低下するもの とし,フレームモデルでは損傷によりいずれ かの一層が剛性低下するものとした.

3.2 逆問題の構成

逆問題解析では損傷に伴う固有振動数の 変化のみに基づき剛性低下と損傷層(部材) を同定するものとする.逆解析手法としての フィルタリングアルゴリズムの計算過程で 求められる固有振動数は,いずれのモデルも 次式で表される非減衰の固有振動方程式を 用いるものとする.

$$-\omega^2 \mathbf{M} + \mathbf{K} = 0 \tag{5}$$

ここに ω は固有振動数,Mは質量行列,Kは 剛性行列である

システムの状態量である剛性と計測デー タである固有振動数の関係は非線形である ため,システム作用素は非線形ベクトル関数 として式(1)で与えられる.式(1)は非線形関数 が滑らかであるという仮定において,状態量 zの周りで線形化し,高次項を無視すると感 度行列 M_k を伴った擬似線形化された離散的 システム方程式を得る.

$$\mathbf{y}_{k} = \mathbf{m}(\mathbf{\tilde{z}}_{k}) + \mathbf{v}_{k}$$
$$\mathbf{M}_{k}\mathbf{\tilde{z}}_{k} + \mathbf{v}_{k}$$
(6)

ここに,

$$\mathbf{M}_{k} = \left(\frac{\partial \mathbf{m}(\widetilde{\mathbf{z}}_{k})}{\partial \mathbf{z}_{k}}\right)$$
(7)

システム方程式(6)に対し,式(4)を用いて逐次 解法であるフィルタリング計算を行うこと により状態量としての剛性を同定すること ができる.

推定行列 \mathbf{B}_k の具体的表現は Wiener フィル タに基づく Kalman フィルタ,射影フィルタ およびパラメトリック射影フィルタに対し て,それぞれ次のように与えられる.

・ Wiener フィルタ

$$\mathbf{B}_{k} = \mathbf{R}_{k/k-1} \mathbf{M}_{k}^{T} \left(\mathbf{M}_{k} \mathbf{R}_{k/k-1} \mathbf{M}_{k}^{T} + \mathbf{Q}_{k} \right)^{-1} \quad (8)$$

ここに,推定誤差共分散行列 \mathbf{R}_{k} は次式で与えられる.

$$\mathbf{R}_{k/k} = \mathbf{R}_{k/k-1} - \mathbf{B}_k \mathbf{M}_k \mathbf{R}_{k/k-1}$$
(9)

・ 射影フィルタ

$$\mathbf{B}_{k} = \left(\mathbf{M}_{k}^{T}\mathbf{Q}_{k}^{-1}\mathbf{M}_{k}\right)^{-1}\mathbf{M}_{k}^{T}\mathbf{Q}_{k}^{-1}$$
(10)

パラメトリック射影フィルタ

$$\mathbf{B}_{k} = \mathbf{M}_{k}^{T} \left(\mathbf{M}_{k} \mathbf{M}_{k}^{T} + \gamma \mathbf{Q}_{k} \right)$$
(11)

射影フィルタおよびパラメトリック射影フ ィルタの推定誤差共分散 \mathbf{R}_k は次式で与えら れる.

$$\mathbf{R}_{k/k} = \mathbf{R}_{k/k-1} - \mathbf{B}_{k} (\mathbf{M}_{k} \mathbf{R}_{k/k-1} \mathbf{M}_{k}^{T} + \mathbf{Q}_{k}) \mathbf{B}_{k}^{T}$$
$$- \mathbf{B}_{k} \mathbf{M}_{k} \mathbf{R}_{k/k-1} - \mathbf{R}_{k/k-1} \mathbf{M}_{k}^{T} \mathbf{B}_{k}^{T}$$
(12)

ここにQ_kは観測雑音誤差共分散であり,一 般に計測誤差を採取する際に得ることがで きる.具体的には計測データより標準偏差を 求め,2 乗した分散値を対角成分として与え ることになる.また,射影フィルタおよびパ ラメトリック射影フィルタには直接推定誤 差共分散行列が含まれていない点に特徴を 有する.

本損傷同定解析では $\tilde{\mathbf{z}}_k$ をフィルタリングkステップの剛性とすると,フィルタリング方 程式(4)における $\mathbf{m}(\mathbf{z}_{k/k-1})$ はk-1ステップ の情報量をもとにしたkステップの剛性に基 づく固有振動数を意味することになり,固有 振動方程式(5)を用いて計算される.これらの 計算は \mathbf{y}_k と $\mathbf{m}(\tilde{\mathbf{z}}_{k/k-1})$ が一致するまで繰り 返されることにより損傷同定が可能となる.

本解析手法では,フィルタ方程式を繰り返し計算アルゴリズムとして用いるが,各フィルタリングステップにおいてノイズベクトルvを考慮せず,同じ観測値を用いることができる²⁾.

3.3 損傷位置の同定 本解析手法では計測データとして固有振 動数のみを採用しているため,損傷位置に関 する情報を直接導入していない.そこで損傷 位置の同定は,フィルタリング計算で得られ る情報に基づき次式により計算した.

$$V_n = \sum_{i=1}^{l} \left(\omega_i - m \left(z_k^n \right)_i \right)^2 \tag{13}$$

ここに, V_n はフィルタリング計算で更新され た固有振動数の第 $n \cong (部材)$ における偏差 平方和であり, ω_i はi次モードの固有振動数, z_k^n はフィルタリングkステップにおける第 n層(部材)の状態量である.またlは固有振 動数の総数である.

第 n 層(部材)に関する損傷の可能性を意味する評価値を次式で表す.

$$J_{n} = \frac{1}{V_{n}} / \sum_{l=1}^{m} \frac{1}{V_{l}}$$
(14)

状態量が収束した時点で,評価値*J_n*が最も大きな値を示す層(部材)が損傷位置として同定される.

4. 同定解析結果

前章で述べたフィルタリングアルゴリズ ムによる同定解析システムによる塔状トラ ス構造とフレーム構造の構造損傷同定解析 結果を示す.なお,フレーム構造に関しては, 実験モード解析に基づくヘルスモニタリン グより得られた計測データ,観測誤差および システムの状態誤差としての推定誤差を用 いた逆解析を行った.

Fig.2~3 にそれぞれのフィルタにおける塔 状トラス構造およびフレーム構造の1層(部 材)が50%剛性低下した場合の損傷同定解析 結果の例を示す.横軸はフィルタリング回数, 縦軸は状態量と評価値の無次元量である.

いずれのフィルタを用いた結果も損傷層 および損傷位置を精度良く同定しているこ とがわかる.特にパラメトリック射影フィル タは,正則化パラメータとしての γ がフィル タリング計算の安定性に寄与していること が確認された.

Fig.2トラスモデルの損傷同定解析結果(部材)

5. おわりに

構造物の保全や安全を確保する上で必要 となる非破壊検査的なアプローチとして,計 算力学からの損傷同定解析システムを示し た.その適応性を,トラス構造やフレーム構 造に対して計測された固有振動数のみを用 いた損傷同定解析結果を通して検証した.今 後は限定されたヘルスモニタリングデータ の利用や多くの部材数を有する構造物への 適応性を検討していきたい.

参考文献

- 1)登坂宣好,大西和榮,山本昌弘,逆問題の数理と 解法,東京大学出版会,(1999)
- 2)村上章,登坂宣好,堀宗朗,鈴木誠,有限要素法・ 境界要素法による逆問題解析,コロナ社,(2002)
- 3)登坂宣好,遠藤龍司,武藤俊広,フィルタ理論を 用いた塔状トラスの構造損傷解析,応用力学論文 集,土木学会,Vol.7,pp155-165,(2004)
- 4)R. Endo, N. Tosaka, Structural Damage Analysis of a Frame Structure Models using Filtering Algorithms, 7th Civil-comp., Paper241, (2004)