トンネル内の鉄道車両周りの 流れと音場の数値解析

1.緒言

鉄道の高速化に伴って、空力騒音・空気抵抗などの 空力学的現象が顕著となり、環境に優しい鉄道を現実 化するためには、それらの現象解明と空力騒音の低 減対策法の開発が不可欠である^[1]。

列車が駅のホームに進入する時や目前を列車が通 過していく時、突風に見舞われる事がある。この列車 走行に伴って発生する空気の流れは列車風と呼ばれ ている。特に、トンネル内での列車風は、列車通過時 の列車風に加えて、トンネル内の圧力波による列車風 も現われ、その現象を解析することは急務である^[1]。

そこで本論文では、トンネル内の鉄道車両周りの 流れ現象を解析するための数値解析手法として指数 関数型 Petrov-Galerkin 有限要素法を適用し、時間積 分の高精度化のために2次精度の Adams-Bashforth 法を導入する^[2]。

また、流体音を予測する方法として Powell と Howe による渦音理論を用いて音源を可視化する方法が検 討されている^[3]。そこで、Powell と Howe による理 論を用いて音源の可視化を行い、鉄道車両周りの流 れ場と比較する。尚、本研究では低マッハ数の流れ場 での解析を目的とするため圧縮性は考慮していない。

2.基礎微分方程式

非圧縮性粘性流体の問題に対する基礎微分方程式 は、Navier-Stokes 方程式と連続の式によって与えら れる。また、得られた式の時間微分項に対し、Fractional step 分解の関係を利用し、圧力場と速度場に 分解すると、形式的に以下の方程式系を得る。

$$\dot{u}_i(\tilde{u}_i, u_i^n) + u_j u_{i,j} = \frac{1}{Re} u_{i,jj} \tag{1}$$

$$\dot{u}_i(u_i^{n+1}, \tilde{u}_i) = -p_{,i}^{n+1} , \quad u_{i,i}^{n+1} = 0$$
 (2)

ただし、Re はレイノルズ数、 u_i^n は n 時間 step での u_i の値、 p^{n+1} は (n+1)step での圧力を表す。

日大生産工 (院)	相磯	友宏
日大生産工	角田	和彦

3. 指数関数型 Petrov-Galerkin 有限要素法

高レイノルズ数の流れ解析に対しても安定した数 値解を得るために、式(1)に指数関数を重み関数とし たPetrov-Galerkin法に基づく有限要素スキームを適 用する。式(1)の重み付き残差表現に発散定理を適用 し、未知関数の近似により積分形式の有限要素方程 式が得られ、この方程式に、時間進行スキームとして 2次精度のAdams-Bashforth法を適用すると次式を 得る。

$$M_{\alpha\beta}\frac{\tilde{u}_{i\beta} - u_{i\beta}^n}{\Delta t} = \frac{1}{2}(3F_{i\alpha}^n - F_{i\alpha}^{n-1}) \tag{3}$$

ただし、 $F_{i\alpha}$ は次の様に定義される。

$$F_{i\alpha} = -(K_{\alpha\beta} + D_{\alpha\beta})u_{i\beta} + f_{i\alpha} \tag{4}$$

4 . Powell と Howe の渦音理論

Powellは流れの中の真の音源は渦にあると考え、次 式を導いた。

$$\frac{\partial^2 \rho}{\partial t^2} - a_0^2 \nabla^2 \rho = \rho_0 \nabla \cdot (\boldsymbol{\omega} \times \boldsymbol{u}) \tag{5}$$

ただし、 ω は渦度、uは速度ベクトルを表す。

式 (5) は渦度と流速の時間変化が音源項と一致する ことを示している。したがって、 $\nabla \cdot (\omega \times u)$ の分布 を調べることにより、音源を可視化する事ができる。

5.数值計算例

表1に本研究で用いた計算条件を示す。Case1で用 いた有限要素メッシュは、総節点数368,760、総要素 数310,940。Case2で用いた有限要素メッシュは、総 節点数107,556、総要素数89,723で、それぞれ八節点 六面体要素で構成されている。図1はxz中央断面の 流線図、図2はxz中央断面の圧力図、図3はxz中 央断面の音源分布図を表している。また、図2(c)は 鉄道総合技術研究所環境工学部の列車通過時の圧力 変動の可視化結果である。

Numerical Analysis of Flow and Sound Field around a Railway Vehicle in Tunnel

Tomohiro AISO and Kazuhiko KAKUDA

表 1. 計算条件					
Case	\mathbf{Re}	Δt	\mathbf{T}	α_i	
Case1	10^{5}	0.01	$0 \sim 100$	0.25	
Case2	10^{6}	0.01	$0 \sim 100$	0.25	

(a) Case1

(b) Case2 図 1. T=100 での流線 (xz 中央断面)

(b) Case2 図 3. T=100 での音源分布 (xz 中央断面)

トンネル内の鉄道車両周りの流れについて非定常非 圧縮 Navier-Stokes 方程式を指数関数型 Petrov-Galer kin 有限要素法による数値解析を通して以下の点が明 らかになった。

 ・図1を見ると、Case1 は物体の背域で縦渦が発生 し、後方領域まで波を打つような流れが観察される。 一方、Case2 は物体に沿った流れが、物体の背域で複 雑な流れとなっているが、波を打つような流れは後 方領域まで続いていない。これは、物体形状が Case1 と比べると滑らかなためと考えられる。

・図2を見ると、Case1,Case2ともに物体の前面では 圧力が高く、物体の後方の圧力は低い事が確認出来 た。また、(c)の研究結果と Case2 を比べると、圧力 の分布が似たような結果になった。

 ・図3を見ると、Case1.Case2ともに圧力の低い部分 と強い音源の部分がほぼ一致している。

7. 結言

形状の異なる鉄道車両周りの流れの有限要素解析 を比較し、流れ場、圧力場および音源場についての違 いを議論してきた。また圧力場の散逸が観察され、そ れが原因として列車風や車両通過時に騒音が発生す るものと考えられる。従って、物体後方に発生する縦 渦や、圧力場の散逸を抑えられるような車両形状であ れば、列車風や騒音の低減に繋がるものと思われる。 また、相対的に流れの条件を設定し解析したため、現 実的な車両移動に伴う流れの現象とは言えない。

今後の課題としては、実際に車両モデルを移動さ せての解析が必要である。対象物体を実際に移動さ せて解析する方法の一つとしてフリーメッシュ法が 挙げられる。これはメッシュレス法の一種である。こ の方法は、節点情報のみを入力とし、それぞれの節点 の周囲で局所要素を生成することにより解析が行わ れる^[4]。

この手法を用い移動車両周りの流れの解析を検討 したい。

参考文献

- [1] 鉄道総合技術研究所ホームページ
- "http://www.rtri.or.jp/index_J.html" [2] 角田和彦・登坂宣好,"非定常非圧縮粘性流れ問題 の指数関数型 Petrov-Galerkin 有限要素法",日本 建築学会構造系論文報告集,439,(1992),189-198
- [3] 小野ほか,"自動車の床下風音における音源の可視 化", 第 14 回数値流体力学シンポジウム,(2000)35
- [4] 矢川元基・細川孝之,"フリーメッシュ法(一種の) メッシュレス法)の3次元問題への適用",日本機 械学会論文集,A,63-614,(1997),2251-2256.