1.はじめに 本研究室では、コンクリート塊 をジョークラッシャーにより破砕して製造さ れた再生骨材を用いたRC梁の付着耐力につい て研究を行ってきた。この製法による再生骨 材はモルタル分が多く残存していて吸水率が 高いため、コンクリートの長さ変化も大きく RC部材に用いると乾燥収縮ひび割れが発生し やすい。この再生骨材を粗骨材として用いた 場合、梁部材には乾燥収縮ひび割れが多数発 生するものの、付着耐力は普通コンクリート に比べ大きな差異は見られない。しかし、曲 げひび割れ性状および耐久性の点において乾 燥収縮ひび割れを抑制することは重要なこと である。そこで本研究では、本年制定された JIS A 5021(コンクリート用再生骨材H)¹⁾の基 準に該当する、磨砕により高度処理が施され、 吸水率が 3%以下に抑えられた再生粗骨材を 用いて、基礎的段階として乾燥収縮ひび割れ がまだ見られない材齢5週時の付着耐力につ いて検討を行う。

2.実験概要 表-1 に試験体詳細を、表-2 に調 合表を示す。本研究で用いた再生コンクリー トは、高度処理による再生粗骨材の基本的な 性状を把握するため再生粗骨材を天然骨材に 対して置換する割合(以下、置換率と称す)を 50%(QM シリーズ)と、100%(QU シリーズ)の2 種類とした。なお、用いた再生粗骨材は偏心 ローター方式の磨砕により高度処理されたも のである。

日大生産工(院)	高野	洋平
日大生産工	師橋	憲貴
日大生産工	桜田	智之

表-1 試験体詳細

試験体名	シリーズ	横補強筋		
	肯材直換举	<i>pw</i> (%)	間隔(mm)	
1) 00QM	_QMシリーズ	0.0	-	
2) 06QM	冉生粗骨材(50%) 砕石(50%)	0.6	160	
3) 12QM	天然砂(100%)	1.2	80	
4) 00QU	QUシリーズ	0.0	-	
5) 06QU	再生粗骨材(100%) 砕石(0%)	0.6	160	
6) 12QU	天然砂(100%)	1.2	80	

*上記試験体以外に長期保存試験体を作成

表-2 調合表

シリーブ	W/C	単位質量(kg/m ³)				
20-X	(%)	水	セメント	細骨材	粗骨材	
QM	64.0 176		275	天然砂	再生 粗骨材	砕石
				824	481	505
QU	64.0	178	278	787	989	

表-3 フレッシュコンクリートの性質

シリーズ	スランプ (cm)	フロー (cm)	空気量 (%)
QM	20.0	32.5×30.5	4.4
QU	19.0	32.0×31.0	3.4

表-4 骨材の品質

シリーズ		絶乾密度 (g/cm ³)	実績率 (%)	吸水率 [*] (%)	混合吸水率 ^{**} (%)	
	再生粗骨材	2.53	63.8	2.43	1 60	
QM	砕石	2.69	61.1	0.43	1.09	
	天然砂	2.57	-	1.92	-	
QU	再生粗骨材	2.53	63.8	2.43	-	
	天然砂	2.57	-	1.92	-	
吸水率は本研究室で行った試験結果を示す また吸水率以外は工場の骨材試験成績表による *工場より骨材を採取したもの **コンクリート打設時に骨材を水洗いして 採取したもの						

Bond Properties of Recycled Aggregate Concrete Beams with recycled Coarse Aggregate by advanced processing

Yohei TAKANO, Noritaka MOROHASHI and Tomoyuki SAKURADA

表-3 にフレッシュコンクリートの性質を、 また表-4 に骨材の品質を示す。本研究室で用 いた再生粗骨材の吸水率試験結果は 2.43%で あった。また、打設時に採取したQMシリーズ の粗骨材の混合吸水率は 1.69%であった。JIS A 5021 のコンクリート用再生骨材Hでは絶乾 密度は 2.5g/cm³以上、実績率は 55%以上、ま た吸水率は 3.0%以下と定められており、すべ て基準値を満たしていた。

図-1 に試験体断面図を、また図-2 に試験 体形状を例示する。主筋は上端と下端ともに 4-D19 を使用し、主筋から側面および底面ま でのかぶり厚さは 30mm とし、サイドスプリッ ト型の付着割裂破壊を想定した。試験体は付 着性状を検討するため下端に重ね継手を設け た単純梁形式で、重ね継手長さは 30db(db:主 筋の公称直径)とした。

3.実験結果

3.1 最終破壊形状 表-5 に実験結果一覧を示 す。また、図-3 に最終破壊形状を 00QM を例 に示す。表-5 の破壊形式に示すように横補強 筋比 pw=0.0%と0.6%の試験体は重ね継手区間 に付着ひび割れが急激に進展するサイドスプ リット型の付着割裂破壊で想定していた破壊 形式となった。

3.2 長期許容応力度時の最大曲げひび割れ幅

図-4 に主筋長期許容応力度時の最大曲げ ひび割れ幅Wmaxを横補強筋を配筋していな いpw=0.0%を例に示す。図中には既往の普通 コンクリート(Nシリーズ)、およびコンクリー ト塊を破砕して製造された骨材を用いた再生 コンクリート(Rシリーズ)の実験結果²⁾を併 せて示した。高度処理による再生粗骨材を用 いた本実験と既往の普通コンクリートの 00N のWmaxは同程度であった。コンクリート塊を 破砕して製造された骨材を用いた 00Rと比較 すると、本実験はWmaxが僅かに小さい値とな った。

図-2 試験体形状(pw=0.0%)

表-5 実験結果一覧

試験体名	圧縮 強度	最大曲げ ひび割れ幅	最大 荷重	付着割裂 強度	破壊	
	В	Wmax	Pmax	u exp.	形式	
	(N/mm^2)	(mm)	(kN)	(N/mm^2)		
1) 00QM		0.08	295.0	3.31	۰ د	
2) 06QM	34.4	0.12	364.2	4.09	3	
3) 12QM		0.08	539.4	(5.93)*	FS	
4) 00QU		0.10	274.0	3.08	c	
5) 06QU	35.5	0.12	354.2	3.98	3	
6) 12QU		0.08	587.0	(6.13)**	FC	

最大曲げひび割れ幅は _t=200N/mm²(P=150kN)時 S:付着割裂破壊 FS:曲げ降伏後の付着割裂破壊 FC:曲げ降伏後の圧縮破壊

*12QMの曲げ降伏時 P=528.6(kN), =18.08(mm) **12QUの曲げ降伏時 P=546.4(kN), =18.40(mm)

図-3 最終破壊形状(00QM 側面)

図-5 に全試験体の主筋長期許容応力度時 の最大曲げひび割れ幅Wmax を示す。横補強 筋を配筋した*pw*=0.6、1.2%においてもQM・QU シリーズとNシリーズのWmaxは同程度であっ た。一方Rシリーズはばらつきが見られ、本実 験に比べWmaxは大きい値となっていた。これ は、高度処理された再生粗骨材は骨材形状が 天然骨材に近いため、Wmaxは普通コンクリー トと同様の傾向が見られたと考える。また、 全ての試験体でWmaxはRC規準³⁾のひび割れ 制限目標値の 0.25mm以内となった。

3.3 変位性状 図-6 に荷重-変位曲線を例示 する。載荷は2点集中による正負繰り返し載 荷を行った。加力の履歴は、梁の曲げ強度略 算式³⁾により計算した主筋の応力度 ₁を 100N/mm²ずつ増加させ、それぞれの応力度で 各1回正負繰返しを行った。横補強筋比pw= 0.0%と 0.6%の試験体は正加力時に付着割裂 破壊が発生し、その後急激に耐力が低下した。 一方、図-6 に示すように横補強筋をpw=1.2% と密に配筋した 12QMは曲げ降伏が認められ、 変位 =30mm過ぎに付着割裂破壊が発生し耐 力が低下した。これは、QMシリーズのコンク リートの圧縮強度(_B=34.4N/mm²)が既往の 普通コンクリート(_B=28.8N/mm²)等に比べ 高かったため、付着割裂破壊が発生する前に 曲げ降伏が先行したものと考える。

図-7 に荷重-変位曲線の包絡線を例示する。 高度処理による再生粗骨材の置換率を 50%と した 00QMと置換率を 100%とした 00QUの初期 剛性に違いは見られなかった。また、普通コ ンクリートの 00Nに比べ僅かに初期剛性は高 くなった。これは、QM・QUシリーズのヤング 係数がともにE=2.43×10⁴(N/mm²)となり、Nシ リーズのヤング係数E=2.28×10⁴(N/mm²)に比 べ高く、引張側のコンクリートの曲げひび割 れに対する抵抗が増加したため、剛性が上昇 したものと考える。

4.付着割裂強度の評価 付着割裂強度は式(1)により求めた。

 $u \exp = \frac{Mu}{j \cdot \cdot \ell s} \qquad (N/mm^2) \qquad (1)$

図-6荷重-変位曲線(pw=1.2%)

図-8に横補強筋比 pw=0.0%の付着割裂強度 を示す。高度処理による再生粗骨材の置換率 を50%としたQMシリーズと置換率を100%とし たQUシリーズの付着割裂強度はNシリーズお よびRシリーズと同等となった。これは、載 荷時期が5週時であり乾燥収縮ひび割れ等の 影響を受けていないため、使用した骨材やそ の置換率の変化による差異が見られなかった ものと考える。

図-9 に全試験体の付着割裂強度を示す。QM シリーズ、QU シリーズはともに同一の横補強 筋比 pw で比較すると付着割裂強度は同程度 であり置換率の違いは認められなかった。ま た、既往のNシリーズおよびRシリーズと比 較すると横補強筋比 pw の増加に伴い付着割 裂強度は上昇しており、付着割裂強度に及ぼ す横補強筋の効果が骨材の種類によらず差異 が見られなかったものと考える。

5.まとめ 高度処理による再生粗骨材を用い た再生コンクリート梁の付着耐力について検 討した結果、本実験の範囲以内で以下の知見 が得られた。

- 1)再生コンクリート梁の主筋長期許容応力度 時の最大曲げひび割れ幅は普通コンクリ ート梁と同程度であった。
- 2)初期剛性は普通コンクリートに比べ、コン クリートのヤング係数が高かったため上 昇が認められた。
- 3)付着割裂強度は乾燥収縮ひび割れがまだ見 られない5週時では、置換率の違いや使用 した骨材による差異が見られなかった。

高度処理による再生粗骨材をすべて天然 骨材に置換した場合を含め曲げひび割れ性状 や付着耐力の検討を行った結果、普通コンク リートと同様の傾向が見られた。

今後、乾燥収縮ひび割れの発生状況をジョ ークラッシャーにより破砕して製造された骨

材を用いた再生コンクリート梁と比較すると ともに、付着性状を打設後1年について検討 する予定である。

謝辞 本研究に際し、株式会社竹中工務店 より再生骨材を供与していただきました。ま た、同技術研究所の柳橋邦生氏には貴重な御 助言をいただきました。再生コンクリートの 手配では岩本建材工業株式会社 江東徳山生 コンクリートに御協力いただきました。ここ に記して深謝いたします。

参考文献

- 1)日本工業規格:JISA 5021(コンクリート用 再生骨材H)、2005年3月
- 2)河井久直、師橋憲貴、桜田智之:再生コン クリート梁の付着性状に及ぼす横補強筋の 効果、日本大学生産工学部第37回学術講演 会、2004年12月、pp.17-20
- 3)日本建築学会:鉄筋コンクリート構造計算 規準・同解説-許容応力度設計法-,1999