プリフォームを用いた射出成形法によるフェノール複合材料の 開発と引張特性

日大生産工(院) 丹野 寿一 日大生産工 邉 吾一 材料プロセス研 後藤 卒士民

1. 緒 言

フェノール FRP は耐熱性に優れ,難燃性,低 発煙性に優れることから,車両,航空,建築関連 の構造に用いられる可能性が大きいと考えられる. しかし,現在のフェノール FRP は成形作業性の 面から,大量の水分を含んだレゾール型の液状フ ェノール樹脂(以下,レゾール)を用いて成形す る場合が多いため,成形時に体積の20%以上の空 洞,水分子を有する.したがってマトリックスの 緻密さという点において,材料としての強度は非 常に不安定なものといえる.そこでマトリックス の面からみると、ノボラック型フェノール(以下, ノボラック)樹脂を加熱溶融して金型に射出し, 熱硬化させるという射出成形法を用いて成形した 方が,水を用いないため,より緻密なものができ ると思われる.ところが,この方法ではマトリッ クスと強化繊維 主にガラス繊維 と予備混合し, 同時に射出するため,繊維破損により長繊維の形 熊による強化機構は望めない。

本研究では,この両者の問題点を解決すべく長 繊維強化材を利用した射出成形技術を確立し,最 大の特徴である難燃性を損なわずに,マトリック スの緻密化を実現させて,十分な構造強度を有す るフェノールガラス繊維複合材料を成形し,その 引張特性を求めた結果について報告する.

2.実験方法の概要

フェノール樹脂の射出成形は一般に図1に示す ような射出成形機を用い,ペレット状のノボラッ クを硬化剤であるヘキサメチレンテトラミン(以 下,ヘキサミン)とシリンダ内で混錬可塑化し, 溶融した樹脂を高圧で金型に射出し,金型で熱硬 化させるという手法で行われる.

本研究では,シリンダ内でのスクリューによる 繊維破損を防ぎ,長繊維の形態による強化を確立 するため, RTM 成形法の考え方を導入し,図2 に示す金型内にあらかじめガラス繊維を配置して おき,そこに硬化剤,添加剤と混錬して,溶融し たノボラックを射出するという手法を検討した. 射出条件は表1に示した.¹⁾

図2 金型の形状と寸法

表1 射出条件

Cylinder Temperature []	80
Die Temperature []	150
Injection Speed [mm/s]	4.2
Cur Time [min]	5
Number of sheets [sheets]	6
Screw Revolition [rpm]	100

Development and tensile property of phenolic composite by injection molding with preform.

Toshiichi TANNO, Goichi BEN and Sotomi GOTOH

3. 構成材料

ガラス繊維の形態は樹脂の浸透性に優れている コンティニュアスストランドマット(以下,マッ ト材)を用いた.写真を図3に示す.母材には粉 末状のノボラックとヘキサミン、粘度低下のため にD-Sorbitol(以下,D-ソル)又はステアリン酸 亜鉛を添加し,約200MPaで圧縮しペレット状に したものを使用した.²⁾D-ソルの添加量について 検討するために回転式粘度測定器を用いて,ノボ ラック単体とそれに対して1・2・4wt%のD-ソル を添加したものを,温度上昇させて粘度を測定し た.その結果を図4に示す.金型温度である150 においてD-ソルの添加量4wt%のときに,48.6% の粘度低下が見られた.

図4 粘度 - 温度曲線

ペレットは次の3種類を用意した.各成分の割 合は重量%を示す.

- A: ノボラック93% + ヘキサミン7%
- B:(ノボラック93% + ヘキサミン7%)に対し てステアリン酸亜鉛10%

C:(ノボラック93% + ヘキサミン7%)に対し て D-ソル4%

4. 引張試験

成形品の評価として静的引張試験を行った.引 張試験片の形状,寸法を図5に示す.試験片は成 形品から射出口を避けるかたちで左右2つを精密 切断機で切り出し,両端にGFRP製のタブを接着 して製作した.引張試験条件を表2に示す.

図 5 試験片寸法 [単位:mm]

表 2 引張試験条件

Control mode	Stroke
Loading rate	0.5mm/min
Sampling interval	1sec
Test temperature	Room temp.

4.1 結果

引張試験の結果を表3に示した.成形品Bは成 形品Aと比較して引張強度,弾性率がともに低下 した 逆に成形品Cは成形品Aと比較して引張強 度,弾性率がともに向上した.これは,D-ソルを 添加したことにより樹脂粘度が低下し,強化繊維 への含浸性が向上したためと思われる.図6に, それぞれの成形品の応力-ひずみ曲線を示し,ま た,弾性域を40MPa付近とした.

Туре	Vf [%]	Tensile Strength [MPa]	Young's Modulus [GPa]	
Α	26.7	94.5	11.5	
В	27.5	87.3	11.1	
С	26.0	106.7	11.7	

表3 引張試験結果

4.2 破断面観察

引張試験後の破断面の写真を図7に示す.成形 品Aは引張方向の斜めで破断している.これは樹 脂の溶融粘度が高いためにマット材によれが生じ てしまい,よれに添って破断したものと考えられ る.

成形品 B は他成形品と比較して,引張方向に垂 直で破断しているが,強化繊維が樹脂から引き抜 けが多く見られる.これは,成形機と樹脂との間 の摩擦低減のために使用したステアリン酸亜鉛を 添加したことによって,樹脂粘度は低下したが, さらにマトリックスと強化繊維との界面強度を低 下させたためと思われる.

成形品 C は,引張方向に垂直で破断して、繊維 の引き抜けが少なかった.D-ソルを添加したこと により,樹脂粘度が低下し強化繊維への含浸性が 向上した.

A B 図 7 試験後の破断様相

5. 織物材への発展

成形品の強度を向上させるために,マット材よ り強化の望める織物材にも成形を試みた.ペレッ トにはタイプAのペレットを用いて成形し,プリ フォームの違いによる成形品の外観と引張特性を 比較した.

5.1 織物材の種類

ガラス繊維織物には,次の3種類を用いた.各

織物材の写真を,図8に示す.

:ステッチング入り織物

1200g/m² (-45°0°45°各400g/m²)

:ステッチング入り織物 800g/m² (0°90°各400g/m²)

:スダレクロス

720 g/m² ($0 \circ 540$ g/m², 90 $\circ 180$ g/m²)

5.2 成形品の評価

射出条件は,表1に示した条件で行った.各成 形品の繊維体積含有率を揃えるために,織物 は プリフォームを3枚,織物 は4枚,スダレ織物 は4枚それぞれ積層して成形した.各織物を使用 した成形品を図9に示す.

成形品 ではガラス繊維の形状がマット材に比 べて浸透しづらいと思われ,射出口側に樹脂リッ チ層ができている.成形品 は,織物のステッチ 間隔が織物 と比べると広いため,樹脂の浸透が し易くなった.しかし,ステッチ間隔が広いので 織物材がよれやすい形態になり,射出口付近に大 きく孔が開いたような繊維のよれが生じた.成形 品 は射出口面,裏面ともに樹脂がよく浸透して いて,繊維のよれも見られなかった.

5.3 引張試験

成形品 , の試験結果を,先のプリフォーム にマット材を用いた成形品(成形品 A)の試験結 果も同時に図10と表4に示す.マット材を用い ている成形品Aと比べ,織物材を使用した成形品 , ともに引張強度,弾性率が向上した.成形 品 は80MPa 付近から非線形となり破断してい

る.これは,射出口面にできた樹脂リッチ層から

破壊し始めたと思われる.また,成形品 は,図 11の破断図から,繊維の引き抜けが見られた.こ のことから,今後樹脂がよく含浸すれば,強度, 弾性率ともにさらに向上することは考えられる.

6.結言

今回はノボラック型フェノールを用いて,RTM を行うことで,水を多く含まないフェノール FRP が作成できた.ノボラックとヘキサミンに D-ソル を添加することにより,粘度の低下が図れ,D-ソ

図10 プリフォームの違いによる引張特性

表 4 引張試験結果

Туре	Vf [%]	Tensile Strength	Young's Modulus
		[MPa]	[GPa]
Α	26.7	95	11.5
	38.4	201	15.2
	27.6	352	20.4

× 図11 試験後の破断図

ルを添加していない成形品と比較して, D-ソルを 添加した成形品は, 強化繊維への含浸性がより向 上したため, 引張強度と弾性率を向上させること ができた. 今後、粘度低下を図ることができた D-ソル添加樹脂を, スダレクロスにも試していく. さらに, 引抜成形への応用も検討していく.

7.参考文献

1) 真鍋賢史, プリフォームを用いた射出成形法 による構造用フェノール FRP の開発,日本大学 大学院生産工学研究科平成 15 年度修士論文概要 集,(2003), pp.1-105~1-108 2) 松本明博,フェノール樹脂の合成?硬化?強靭化 および応用,アイピーシー,(2000),pp.190~191 3) 丹野寿一,邊吾一,後藤卒土民,プリフォー

ムと射出成形法によるフェノール複合材料の開発 と引張特性,日本複合材料学会 2005 年度研究発 表講演会予稿集,(2005), pp.13~14