1. はじめに

建物周りの流れに関する研究は、サーミス タ、熱線風速計が用いられてきた。これらの 計測器は計測器自身が計測領域付近の流れを 乱してしまい、また粒子画像流速測定法いわ ゆる PIV(Particle Image Velocimetory)は、計測 領域付近の流れを乱すことはなく計測対象域 全体を同時に計測できるがサンプリング周波 数が低く流れの変動を捉えるには至ってない。

一方、風圧計測に関しては、多点同時測定 が可能でそれらの挙動、性状について詳細な 研究が行われている。そこで本研究では、風 圧と周辺流れの同時計測を行い相関性を明ら かにすることを目的とし、その準備段階とし て局部風圧に影響を及ぼす特徴的な周辺流れ について 3 次元レーザードップラー流速計 (Three Dimensional Laser Doppler Anemometry)

を用い計測し、前年度に報告した Cube 周辺 の平均風速分布と本研究の可視化実験を参照 し、その変動風速のパワースペクトルについ て考察を行う。

2. 実験方法

本研究では、日本大学生産工学部ハイテクリ サーチセンター内の風洞(風洞断面 W:1m× H:0.8m Fetch:3.5m)を用いた。実験気流は、実 験模型を設置していないときの模型中心位置 で計測し、図1に示すように日本建築学会荷 重指針¹⁾で定める地表粗度区分IV(指数 α =0.27)の乱流境界層を縮尺1/500で再現し た。実験模型は、一辺が100mmのCube(ア クリル製)を用いた。実験風向 θ は、0°と45° の2風向、計測高さは300mm、計測領域は0° で300×750、45°で300.7×741.4、計測点は 対称性を考慮して、風向 θ =0°が 6,716点、風 向 θ =45°が 6,742点とし、図2に計測点座標定 義を示す。(紙面の都合上風向 45°の座標定義

○日大生産工(院)	永塚康宏
日大生産工	丸田榮蔵

日大生産工(研) 吉田幸彦

は、割愛)データ取得は、サンプリング時間が 一定でないため、1 測定点につき約 20 秒間の データを取得し、かつ線形補間によりサンプ リング時間 Δt=1.2mm sec でデータ数 n=16,384 で等間隔にリサンプルした。(表 1 参照)

可視化実験は日本大学生産工学部エッフェ ル型境界層風洞(W:2.2m×H:1.8m Fetch:13.4m)を用い、乱れの少ない一様流の元 Cube周辺に発生する流れを観測しその映像 を元に分析を行う計測点を選定する。図3に 可視化実験のカメラ位置を示す。カメラ位置 A は風洞側面から縦渦を撮影、カメラ位置 B は風洞天井の窓越しから側面の剥離を撮影、 カメラ位置Cは風下から風向45°の屋根面に 発生する円錐渦を撮影する。

Study on velocity fluctuating of the wind around the building that influences local wind pressure Yasuhiro NAGATSUKA, Eizo MARUTA, Yukihiko YOSHIDA

3. 実験結果及び考察

3. 1カルマン渦の検証

カルマン渦の周波数は n = S×V/D で定義 され、S はストローハル数、V は入射風速[m/s]、 D は代表長さ[m]を表す。定義式より入射風速 を変化させながら実験を行い得られた渦のピ ーク周波数に代表長さを掛けた値を入射風速 で割ることでストローハル数の値を算出する。 その結果を図4に示す。入射風速が1、2、3、 4m/s と増加するに従って、カルマン渦の周波 数の値も約1、2、3、4Hz と変化し、カルマ ン渦の周波数の風速による違いを確認した。 図5に計測座標の位置、図6にパワースペク トルを示した。

3. 2風向 0°Cube 前方における縦渦

写真1に可視化画像を示す。図7に風洞実 験で得られた建物風上前方に生じる縦渦のス ペクトル検討 Point を示し、渦の外側から中 心へ1、2、3、4の番号を付けた。図8に、ス ペクトル、表2に座標及び主流成分Vとx、y、 z成分の標準偏差 σ_x 、 σ_y 、 σ_z を示した。縦渦 の内側と外側を比較することによって渦がど のように発達していくかを検討した。表2の σ_x 、 σ_y 、 σ_z の風速変動値から分かるように、 渦中心に近い程x、z成分の風速変動が大きく、 特にz成分の増大が顕著な性状を示した。こ のことは、図の8のx、y、z、3成分のパワー スペクトルにおいても確認できた。

写真1 縦渦の可視化画像(カメラ位置 A)

図7 縦渦の検討 Point (Y=0)

表	長2 座標及び風速 Data			$\overline{V} = \sqrt{U_x^2 + U_y^2 + U_z^2}$		
		Point 1	Point 2	Point 3	Point 4	
	(x,y,z)	(-70,0,30)	(-70,0,20)	(-80,0,20)	(-80,0,15)	
	\overline{V} [m/sec]	2.1873	2.2132	2.4767	2.3549	
	$\sigma x[m/sec]$	0.8745	1.1491	1.1592	1.4176	
	$\sigma y[m/sec]$	0.9702	0.9798	1.084	1.0914	
	$\sigma z [m/sec]$	0.7825	0.9827	1.3002	1.644	

3. 3風向 0°Cube 側面における剥離流

写真2に可視化画像、図9に、側面で下降 する剥離流の検討 Point の位置関係を示した 詳細、図10にパワースペクトル、そして表3 に各 Point の座標及び風速 Data を示した。図 10 より、流れの偏向が生じ始める Point 1 で は y 成分のパワーが大きく前述 3.2 に示した パワースペクトルのピークとほぼ同じ周期に あり、剥離点近傍の Point 2 では x、z 成分の 変動が抑制され y 成分の変動が著しく増幅さ れている。そして剥離流による強風領域中に ある Point 3 では、一転して y 成分の変動が抑 制され、抑制されていた x 成分が突出した Power 増大を示した。そしてこの Point 3 のパ ワースペクトルは、4Hzと8Hz付近に顕著な ピークをまた、4Hz については偶然にも Cube のカルマン渦のピーク周波数 $(n = SV/D = 0.1 \times 4 \frac{m}{s}/0.1m = 4Hz$) にも 一致した。

3. 4 風向 45°Cube 屋根面の円錐渦

ここでは入射風向 45°で生じる、いわゆる 円錐渦内の渦の放出性状をパワースペクトル から検討している。評価点の高さは、LDA で 計測できた屋根表面近くの変動が著しく高く なる位置を選定している。図11は、スペクト ル検討 Point の位置関係を示した詳細である。 写真3に可視化画像、図12にパワースペクト ルを、そして表4に座標及び風速 Data を示す。 図 12 から分かる事は、y 成分のスペクトルが 風上屋根面隅角部に最も近い Point 1 で前述 した4Hz近傍において鋭いピークを有するパ ワー増大を示すが、後剥離に位置する Point 4 になるにつれ変動が抑制されパワーが減少し ている。x 成分は、後流の Point 4 に移動する につれ渦放出の特性により 5~6Hz 付近でピー ク周波数が鋭くなりながら著しいパワーの増 大が示される。z 成分のパワースペクトルは 屋根稜線で剥離する流れの最付着と屋根面に より z 変動が抑圧された性状を示している

表4 座標及び風速 Data

表4 座標及び風速 Data			$\left(\overline{V} = \sqrt{U_x^2 + U_y^2 + U_z^2}\right)$		
	Point 1	Point 2	Point 3	Point 4	
(x,y,z)	(-20.7,20.7,112)	(-10.7,30.7,112)	(0,40.7,112)	(10.7,50.7,112)	
\overline{V} [m/sec]	6.1265	5.6169	5.3151	5.0037	
$\sigma x[m/sec]$	1.4451	1.8924	2.185	2.2559	
$\sigma y[m/sec]$	1.3159	1.269	1.236	1.1785	
$\sigma z [m/sec]$	0.7047	0.8154	0.9928	1.0109	

4. まとめ

変動風速パワースペクトルにより現象を捉 えることによって、これまで可視化実験等で 推察されていた現象について明らかにするこ とができた。今後は、2 点間や風圧と風速の 相関性について研究し、各々の現象同士の関 連性について検証を行う必要がある。

参考文献

1)日本建築学会編、建築物荷重指針·同解説、1993年