RPC と CFS からなる合成部材の変形と耐力に関する実験研究

日大生産工(院)	○瀬戸山:	満俊	日大生産工	木田	哲量
日大生産工	阿部	忠	太平洋セメント㈱	田中	敏嗣

1. はじめに

コンクリート系材料は、構造物における部 材重量の軽減や、部材断面積の縮小などを目 的として改良・開発が行われており、様々な 新材料が開発されている。それら新材料の中 で、高強度を有し、さらに靭性能にも優れて いることから、近年、反応性粉体コンクリー ト(Reactive Powder Concrete,以下 RPC)が 注目されている。RPC は圧縮強度 200N/mm² 以上を有し、また RPC 中に配合されている高 強度鋼繊維とコンクリートとの付着により、 ひび割れ発生後も応力が保持される¹⁾。すな わち架橋効果によって優れた変形性能を示す。 しかしながら、一般に鋼繊維の架橋効果はコ ンクリートにひび割れが発生した後に発揮さ

れることが知られている²⁾。 一方、炭素繊維シート(Carbon Fiber Sheet,

以下 CFS)は、引張強度 3000N/mm²以上を有 する材料である。この CFS をコンクリート部 材に貼付することにより過大なひび割れの進 展を抑制させ、耐力の向上が期待できる。ま た、CFS は薄く軽量であることから部材自重 を軽減することが可能である。

したがって、CFS を RPC 部材に貼付した ハイブリッド構造とすることにより RPC 部 材の耐力を向上させ、部材の軽量化を図るこ とが可能であると考えられる。

そこで本研究は、CFS と RPC を併用した はり部材を CFS・RPC はりと称し、CFS・RPC の力学特性を解明する目的で 静荷重実験、

移動荷重実験を行い、支間および断面が同 一の RC はりと比較、また CFS・RPC はりに 移動荷重が作用する影響に関して検討したも のである。

2. 供試体の使用材料および寸法

2.1 使用材料

表 - 1 RPC の構成材料 (単位:kg/m²)

水	鋼繊維	減水剤	ダクタルプレミックス
180	157	26	2254

表 - 2 RPC の材料	特性 (単位:N/mm²)	
圧縮強度	曲げ強度	
209.69	26.90	

表 - 3 CFS の力学特性			
水	鋼繊維	減水剤	ダクタルプレミックス
180	157	26	2254

表 - 4 RC の力学特性

コンクリート	鉄筋 (SD295A, D16)			
圧縮強度	降伏強度	引張強度	弾性係数	
(N/mm ²)	(N/mm^2)	(N/mm^2)	(kN/mm^2)	
38.5	368	568	196	

本研究では、RC はり2本と CFS・RPC はり2本を用いる。RPC はりはポルトランド セメントにシリカフューム、珪砂粉末等をプ レミックス配合したもの(太平洋セメント (株)製、ダクタル FM)に水、高強度鋼繊維(=0.2mm、長さ L=15mm)を練り混ぜた長方形 はりである。また、CFS には高強度連続カー ボンシートを用い、表面処理剤にはプライマ ー、接着剤には接着用樹脂を用いた。ここで、 RPC の構成材料および材料特性をそれぞれ 表 - 1、表 - 2 に示す。また、CFS の力学特 性を表 - 3、RC の力学特性を表 - 4 に示す。 2.2 供試体寸法

本実験の CFS・RPC はりは全長 2200mm、 支間長 2000mm、幅 300mm、高さ 210mm とし、供試体の下面全長に CFS を貼付した。 RC はりの支間長および断面寸法は CFS・ RPC はりと同一寸法とし、鉄筋は引張側に 3 本(As=596mm²)、圧縮側に 2本(As'=397mm²) 配置して有効高さを 172mm とした。なお、 供試体の寸法および鉄筋配置を**図 - 1** に示す。

Experimental Study on Deformation and Load-Carrying Capacity of Composite Member Which Consists of RPC and CFS by Mitsutoshi SETOYAMA Tetsukazu KIDA, Tadashi ABE and Satoshi TANAKA

3. 実験概要

3.1 実験装置

本実験に用いる実験装置は鋼製の反力フレ ームのはりに鋼製の車輪(直径 40cm、幅 25cm)を取り付けた油圧式の構造物振動疲労 試験装置を固定し、クランクアームとモータ ーにより供試体を取り付けた台車を水平方向 へ往復運動させ、車両の走行状態を再現した 装置である。なお、本実験装置の最大荷重は 300kNであり、その概要を図-2に示す。

3.2 静荷重実験 (M)

静荷重実験は、図-3(a)に示すように、最 大応力の生じる支間中央に輪荷重を静止させ た後に載荷する実験である。載荷方法は、最 大荷重を 5.0kN ずつ増加させ、最大荷重まで の載荷と 0kN までの除荷を、供試体が破壊に 至るまで繰り返し行う漸増繰り返し載荷とし た。

3.3 移動荷重実験 (R)

移動荷重実験は、図-3(b)に示すように、 供試体が破壊に至るまで荷重増加と走行を繰 り返す実験である。輪荷重の走行方法は、支 間中央で車輪を停止させた状態から左支点へ 走行させ、その後右支点を折り返して支間中 央に停止させることとした。載荷方法は静荷 重実験と同様に漸増繰り返し載荷とし、最大 荷重載荷後、輪荷重を1走行させてからたわ みとひずみの計測を行った。なお、走行速度 は1走行4mを18secで走行する平均速度 0.22m/secとした。

4. 結果および考察

4.1 実験耐力

本実験における実験耐力および破壊モード を表-5に示す。

本実験における RC はりの実験耐力は静荷 重の場合は 83.00kN、移動荷重の場合は 69.30kN となった。全ての供試体が曲げ破壊 となったことから静荷重実験と移動荷重実験 における曲げ耐力を比較すると、RC はりは 移動荷重が作用することによって約25%耐力 が低下する結果となった。

次に、CFS・RPC はりの実験耐力は、静荷 重の場合は 155.40kN、移動荷重の場合は 140.95kN となり、移動荷重が作用すること によって約 10%耐力が低下する結果となった。 このことから RC はりに比べて移動荷重が作 用することによる耐力低下が少ないことがわ かる。

図 - 2 走行振動試験装置

(b) 移動荷重実験図 - 3 実験方法

表 - 5 耐力表

供試体名	実験耐力 (kN)	耐力比	破壊 メカニズム
RC-M	83.00		曲げ
RC-R	69.30	0.83(RC-R/RC-M)	曲げ
CS-M	155.40	1.87(CS-M/RC-M)	曲げ
CS-R	140.95	2.03(CS-R/RC-R)	њıт
		0.91(CS-R/CS-M)	目し

また、CFS・RPC はりの曲げ耐力を RC は りと比較すると、静荷重の場合 1.87 倍、移動 荷重の場合 2.03 倍となり、CFS・RPC は、RC に比して非常に高い耐力を有していることが 明確となった。

4.2 破壊メカニズム

本実験における供試体終局時のひび割れ図

(b) 移動荷重実験 図-4 ひび割れ図

を図-4 に示す。なお、CFS・RPC はりには 微細なひび割れが多く生じたことから、ひび 割れ発生区間の支間中央 150cm 付近までを 表示することとする。

RC はりに静荷重が作用した場合、ひび割 れが支間中央に集中して発生し、荷重の増加 に伴って、ひび割れは圧縮鉄筋の配置付近ま で進展した。なお、ひび割れは5~15cm 間隔 で発生し、最終的に曲げ破壊に至った。移動 荷重が作用した場合は、荷重の移動の影響に よってひび割れが支間全体にわたり生じた。

次に、CFS・RPC はりは、図-4 より、静 荷重および移動荷重の場合ともに、RC はり に比してひび割れの発生量が大きく異なり、 複数の微小ひび割れが発生していることがわ かる。これは RPC 中に配合された鋼繊維によ る架橋効果によって応力が広範囲に分散され たためであると考えられる。

移動荷重が作用した場合、RC はりと同様 に、ひび割れが支間全体にわたり生じた。し たがって、RPC 中に配合された鋼繊維による 架橋効果が十分に発揮されていることがわか る。

4.3 最大荷重とたわみの関係

本実験の全ての供試体における最大荷重と 支間中央のたわみの関係を図-5に示す。

図-5より、CFS・RPC はりは RC はりに 比べて緩やかにたわみが増加している。この ことから CFS・RPC はりの剛性が RC に比べ て非常に高いことがわかる。

なお、全ての供試体において、静荷重実験 および移動荷重実験ともに初期ひび割れ発生 後にもたわみの増加が見られた。また、CFS・

RPC はりは、両荷重の場合ともに、たわみが 最大荷重 70kN 付近まで直線的に増加した後、 急激に増加し、終局に至った。この 70kN 載 荷までは荷重を除荷したときに生じる残留た わみはほぼ生じておらず、CFS・RPC はりは 健全な状態を維持できると考えられる。

次に、終局時の CFS・RPC はりのたわみに 着目すると、静荷重の場合 14.65mm、移動荷 重の場合 19.48mm となり、移動荷重実験に おける終局時のたわみが静荷重実験に比べ、 5mm 程度大きかった。これは、4.2 において 既述したように、移動荷重が作用することに よって支間全体に生じた微小ひび割れに起因 したものと考えられる。

4.4 支間とたわみの関係

図-6 は、CFS・RPC はりの左支点からの 距離とたわみとの関係である。なお、最大荷 重とたわみの関係より、70kN 載荷付近から たわみが急激に増加したことより 60kN 載荷 以降を示した。

図-6より、両供試体ともに局所的なたわ みの増加がなく、支間中央を基準としてほぼ 対称にたわみが増加しており、曲げ破壊に至 ったことが確認できる。しかし、移動荷重が 支間全体に作用したことにより、左右のたわ みに差異が生じる結果となった。

4.5 支間と CFS ひずみの関係

CFS・RPC はりの終局直前時までの支間と 支間方向のひずみとの関係を図-7 に示した。 なお、CFS の公称破断ひずみは 18190×10⁻⁶ である。

図-7 より、静荷重実験および移動荷重実 験ともに、荷重の増加に伴い支間中央におけ る CFS ひずみが増加し、三角形分布形状をし ていることがわかる。また、CFS・RPC はり

支間とたわみの関係

が曲げ破壊に至ったことから破壊断面方向の ひずみが増加することがわかる。さらに、左 支点側のひずみが右支点側に比して初期の荷 重段階においてひずみが増加していることが わかる。これは、CFS と RPC の付着、また 荷重条件に起因したものと考えられる。

次に、静荷重実験と移動荷重実験のひずみ を比較すると、移動荷重が作用した場合の方 が支間全体において大きいひずみを示す結果 となった。これは、移動荷重によって広範囲 に応力が作用し、ひび割れも広範囲に生じた ためであると考えられる。

5. まとめ

CFS・RPC はりの実験耐力は、RC はりの 実験耐力に比して、静荷重実験の場合は 1.87 倍、移動荷重実験の場合は 2.03 倍と なり、RC はりに比べて優れていることが 明確となった。

静荷重と移動荷重の実験耐力を比較する と、RC はりは 25%、CFS・RPC はりは 10% 耐力が低下する結果となった。このことか ら、CFS・RPC はりは RC はりに比べて移 動荷重が作用することによる耐力低下が少

ないことが明確となった。

CFS・RPC はりは、静荷重、移動荷重の場 合ともに複数の微小ひび割れが生じる結果 となった。これは、RPC の鋼繊維の架橋効 果によって応力が広範囲に伝達されたため と考えられる。

CFS・RPCの剛性はRCに比して非常に高 く、最大荷重 70kN 載荷までは残留たわみ がほぼ生じることなく健全な状態を維持で きると考えられる。

CFS ひずみは、移動荷重が作用する場合、 支間全体において大きい値を示した。これ は、荷重が広範囲に作用し、ひび割れも広 範囲に生じたためであると考えられる。

「参考文献」

1) 社団法人日本コンクリート工学協会,高 靭性セメント複合材料を知る・作る・使う, 高靭性セメント複合材料の性能評価と構造利 用研究委員会報告書,(2002), pp.4-49

西脇敬一,川又篤,柳博文,松岡茂,短 2) 繊維と繊維シートを併用した高靭性モルタル に関する基礎的研究,コンクリート工学年次 論文集, No.26, (2004), pp.1561-1566