再生コンクリートの合成構造への適用に関する研究

- 縮小試験体の中心圧縮性状-

藤本 利昭 (安藤建設㈱・主管研究員)

- 小松 博(日大生産工・教授)
- 櫻田 智之(日大生産工・教授)

1. はじめに

近年,JIS が制定された再生骨材^{1),2),3)}のうち, 吸水率が5%以下の再生骨材Mはコンクリート塊 を破砕のみで製造した骨材であり,付着するモル タル分や微粉末の影響で吸水率が高く,乾燥収縮 が大きいため,これを用いた再生コンクリートで は乾燥収縮ひび割れが発生しやすい。このため JIS A 5022²⁾では,乾燥収縮を受けにくい地下構造 物や,コンクリート充填鋼管(以下,CFT)のよう に継続的に乾燥を受けないよう表面が保護され ている部材への適用が推奨されている。

前報(シリーズ I)⁴⁾では,再生骨材 M を用いた コンクリート(以下,再生コンクリート)の有効利 用方法の一つとして,薄肉鋼管によりコンクリー ト外周を補強した鉄骨コンクリート(以下,SC)柱 ならびに CFT 柱部材に着目し,柱部材としての 基本性能を表す圧縮性状について,普通コンクリ ートとの比較を基に検討を行った。

本報(シリーズII)では,更に超高強度繊維補強 コンクリート(以下,UFC)によりコンクリート 外周を補強した SC 柱の実験を行い,シリーズ I で行った SC 柱の実験結果を含めて,再生コンク リートを用いた SC 柱の圧縮性状について検討を 行った。

2. 実験概要

2.1 試験体

試験体の一覧を表1に,代表的な試験体の断面 形状を図1に示す。試験体は,断面形状を b× D=150×150mmの正方形断面とし,H形鋼(H-100 ×100×6×8)を再生コンクリートで被覆し,更に 薄肉鋼管(板厚 2.3mm)で補強した試験体(S-R-S)を 標準として,柱外周部の被覆材の種類(薄肉鋼管, UFC(厚さ 15 mm,有効厚さ 11.4mm))および被覆材 の有無,内蔵鉄骨の有無,被覆コンクリートの有 無およびコンクリートの種類(再生,普通)を実験 変数とした 15 種類,合計 20 体の試験体を計画し

表1 試験体一覧

Study on Application of Recycled Aggregate Concrete to the Composite Structures - Axial Compression Behavior of Miniature Specimen -Toshiaki FUJIMOTO, Hiroshi KOMATSU and Tomoyuki SAKURADA た。なお試験体の高さは,SC 柱試験体の断面せ い D の 3 倍(=450mm)とし、コンクリートの打設 は試験体上端より縦打ちで行った。

2.2 使用材料

使用したコンクリートの調合表を表2に,実験 時の圧縮強度 σ_B を表3に示す。各コンクリートの 設計基準強度は,再生骨材 M を用いたコンクリ ートの呼び強度の上限値である 36N/mm²を目標 とした。コンクリート強度用供試体は ϕ 100×200 とし,封かん養生とした。表4に鋼材の材料試験 結果を示す。内蔵鉄骨および薄肉鋼管にはSS400 材を用い,鋼材の引張試験片は5号および12B号 試験片を用いた。表5に UFC の材料試験結果を 示す。圧縮強度 σ_{BU} および曲げ強度 σ_{FU} は,何れも UFC の規格値を満足していた。

2.3 加力および計測方法

加力は写真1および図2に示すように, 試験体 上下の拘束条件を固定として実施した。載荷は

表2 コンクリートの調合表

				//	1 V/D/N/L	112	
谁抱	W/C			単位質	量(kg/n	n ³)	
俚炽	(%)	水	セメント	細骨	} 材	粗	骨材
再生	53.7	170	317	天然砂	再生砂	砕石	再生 粗骨材
				496	435	413	362
本 活	並通 52 19		195 256	山砂	砕砂	石	砕石
普通	32	165	330	617	156		979

種類	実験時材齢	圧縮強度 $\sigma_{\!B}({ m N/mm}^2)$	
再生	31 日	30.7	S dl T
普通	29 日	37.8	>9-~1
再生	65 日	27.5	<u>ي</u> الــــــــــــــــــــــــــــــــــــ
普通	52 日	37.3	29-×11

表3 コンクリートの材料試験結果

表4 鋼材の材料試験結果								
		板厚	やが係数	降伏強度	引張強度	伸び率		
1	锺類	t	E_s	σ_{y}	σ_t	ε		
(1		(mm)	(kN/mm^2)	(N/mm^2)	(N/mm^2)	(%)		
薄	肉鋼板	2.29	198	265	406	27.4		
Н	ウェフ゛	5.52	191	329	459	24.2		
鋼	フランシ゛	7.43	195	325	462	27.1		

表5 UFCの材料試験結果

種類	圧縮強度 $\sigma_{\!BU}({ m N/mm}^2)$	曲げ強度 σ _{FU} (N/mm ²)
実験値	202	46.3
規格値	180 以上	22.5 以上

5000kN 試験機による単調載荷とし, 試験体の平 均軸方向ひずみɛ(=軸方向変位/試験体高さ)が 5% に達するまで行うことを原則とした。なお実験の 際には, 試験体のコンクリート打設面は, セメン トペーストを用いて平滑にして実施した。測定は, 上下加力用プレート間の2ヶ所に取り付けた変位 計により鉛直変位を測定し, 薄肉鋼管には 2 軸ひ ずみゲージを貼付し, 軸方向および横方向ひずみ を測定した(図 2 参照)。

写真1 試験体セット状況

3. 実験結果

3.1 鉄骨柱試験体

鉄骨柱試験体の圧縮試験結果を図3および表6 に、最終破壊形状を写真2に示す。表6には、材料試験による降伏強度 σ_y を用いた降伏耐力 N_y (= σ_y · A_s , A_s :鋼材の断面積),圧縮試験結果から0.2% オフセット法により求めた降伏強度 σ_{yc} および降 伏耐力 N_{yc} (= σ_{yc} · A_s)を示している。最大耐力 N_{max} は局部座屈により決定した。また、引張試験に比 べ圧縮試験の降伏耐力が高い値を示した。

表6 鉄骨柱試験体の耐カー覧

	N_y (kN)	N _{yc} (kN)	σ_{yc} (N/mm ²)	N _{max} (kN)	N_{max}/N_y	N_{max}/N_{yc}
S-0-0	655	678	337	772	1.18	1.14
$N_v = \sigma_v$	$A_{s} A_{s}$	鋼材の関	斤面積,N _v	$\sigma_{vc} = \sigma_{vc} \cdot A_s,$	N _{exp} :最	大耐力

写真 2 最終破壊形状(試験体: S-0-0)

3.2 コンクリート柱試験体

コンクリート柱試験体の圧縮試験結果を図4お よび表7に、最終破壊形状の例を写真3に示す。 いずれの試験体も最大耐力を示した後に急激な 破壊に伴い耐力が低下し、実験を終了した。最大 耐力 N_{max} から求めたコンクリートの圧縮強度 σ_{max} は、材料試験によるシリンダー3本の平均圧縮強 度とほぼ同等であった。

3.3 UFC 柱試験体

外殻材として用いるボックス型の UFC 試験体 の圧縮試験結果を図5および表8に,最終破壊形 状の例を写真4に示す。

UFC 試験体は、いずれも最大耐力を示した後に

表 7 コンクリート試験体の耐カー覧							
	N _{max} (kN)	$\sigma_{max} \ ({ m N/mm}^2)$	$\sigma_B \ ({ m N/mm}^2)$	σ_{max}/σ_B			
0-R-01	691	31.6	30.7	1.03			
0-R-02	652	29.0	27.5	1.05			
0-P-01	851	36.5	37.8	0.97			
0-P-02	890	39.6	37.3	1.06			
	- 「 」 「 」 」 」 」 」 」 」 」 「 」 」 「 」 」 「 」 」 「 」 」 「 」 」 「 」 」 「 」 」 「 」 」 」 「 」 」 「 」 」 「 」 」 「 」 」 」 「 」 」 」 」 「 」 」 」 「 」 」 」 」 」 」 」 」 」 」						

_ . _ . . .

 σ_{max} : 上縮強度(= N_{max}/A_c , A_c : コンクリート断面積)

写真3 最終破壊形状(試験体:0-R-02)

急激な破壊に伴い耐力が低下し、実験を終了した。 最大耐力 N_{max} から求めたUFCの圧縮強度 σ_{max} は、 材料試験による圧縮強度 σ_{BU} を下回った。これは、 試験体形状の違いによるものと推測される。

		1		
	N _{max} (kN)	$\sigma_{max} \over ({ m N/mm}^2)$	$\sigma_{BU} \over ({ m N/mm}^2)$	σ_{max}/σ_{BU}
0-0-U1	812	128		0.64
0-0-U2	828	130	202	0.64
0-0-U3	765	119		0.59
		/ A A T	ma of the	(1.711年)

表 8 UFC 試験体の耐力一覧

 σ_{max} : 圧縮強度(= N_{max}/A_u , A_u : UFC の有効断面積)

写真 4 最終破壊形状(試験体: 0-0-U1)

3.4 外殻材を用いたコンクリート柱試験体

コンクリートを薄肉鋼管で補強した試験体の 圧縮試験結果を図 6(a), コンクリートを UFC で 補強した試験体の圧縮試験結果を図 6(b)に, 実験 結果の一覧を表 9 に, UFC で補強した試験体の最 終破壊形状を写真 5 に示す。薄肉鋼管で補強した 試験体の最大耐力 N_{max} は,式(1)に示す薄肉鋼管 と内部コンクリートの単純累加耐力 N₀の 0.96~ 0.97 倍の値を示している。

$$N_0 = N_c + N_h \tag{1}$$

ここで、 N_c : コンクリート部分の終局圧縮耐力 (= $\sigma_B \cdot A_c$)、 N_h : 外殻材の終局圧縮耐力(薄肉鋼管: $N_h = \sigma_y \cdot A_s$ 、 A_s : 薄肉鋼管の断面積、UFC: $N_h = \sigma_{BU} \cdot A_U$)である。

最大耐力後は局部座屈により耐力低下を生じるが,耐力低下後もコンクリートの圧縮耐力 N_cの約 0.6~0.7 倍の荷重を維持し,拘束の無いコンリートに比べ変形能力(荷重保持能力)が著しく向

表 9	外殻を	「を用い	たコング	クリー	ト柱
· LAC O					1 1-

	N _c (kN)	N _h (kN)	N ₀ (kN)	N _{max} (kN)	N_{max}/N_0
0-R-S	649	255	1005	970	0.97
0-P-S	799	333	1155	1108	0.96
0-R-U	445	1077	1722	1398	0.81
0-P-U	604	1277	1880	1555	0.83

 $N_0=N_c+N_h$, $N_c: コンクリート部分の終局圧縮耐力(= \sigma_b \cdot A_c)$, $N_h: 外殻材の終局圧縮耐力(薄肉鋼管: N_h=\sigma_y \cdot A_s, A_s: 薄肉鋼管の断面積, UFC: <math>N_h=\sigma_{BU} \cdot A_U$)

写真 5 最終破壊形状(試験体: 0-R-U)

上した。

一方, UFC で補強した試験体の最大耐力 N_{max} は単純累加耐力 N_0 の 0.81~0.83 倍であり,最大 耐力を示した後に急激な破壊に伴い耐力が低下 し,変形能力の向上は認められなかった。そこで, UFC で補強した試験体の最大耐力 N_{max} からコン クリートの負担軸力 N_c を差し引くことで求めた UFC の圧縮強度 σ_{BUmax} (式(2)参照)は 151N/mm² で あった。

なお、コンクリートの種類の違いによる差異は 認められなかった。

$$\sigma_{BU\max} = \frac{N_{\max} - N_c}{A_c} \tag{2}$$

3.5 SC 柱試験体の圧縮特性

内蔵鉄骨と被覆コンクリートのみで構成され る SC 柱試験体の圧縮試験結果を図7および表10 に、代表的な試験体の最終破壊破壊形状を写真6 に示す。SC 柱試験体は、最大耐力を示した後、 かぶりコンクリートの圧壊と共に耐力低下を生 じ、かぶりコンクリートの剥落を伴いながらほぼ 一定の荷重を維持していた。

再生コンクリートを用いた試験体(S-R-02)では, コンクリート表面に乾燥収縮によるものと思わ れるひび割れが生じていたが,各試験体の最大耐 力は,式(3)に示す単純累加耐力 N₀の 0.95~1.03 倍で,圧縮耐力へのコンクリートの種類の違いや 乾燥収縮ひび割れによる影響は認められなかっ

た。また最大耐力以降は、概ね内蔵鉄骨の負担軸 カ*N*_sと同等の荷重を維持していた。

$$N_0 = N_s + N_c \tag{3}$$

ここで, N_s:鉄骨部分の終局圧縮耐力である。

表 10 SC 柱試験体の耐力一覧

	N _c (kN)	N _s (kN)	N ₀ (kN)	N _{max} (kN)	N_{max}/N_0
S-R-01	629		1284	1328	1.03
S-R-02	563	655	1219	1232	1.01
S-P-01	774	055	1430	1362	0.95
S-P-02	764		1420	1457	1.03

 $N_0=N_s+N_c=\sigma_y\cdot A_s+\sigma_B\cdot A_c, N_s, N_c: 鉄骨およびコンクリート部分の終局圧縮耐力$

写真 6 最終破壊形状(試験体: S-P-02)

3.6 外殻材を用いた SC 柱試験体

コンクリートを薄肉鋼管又は UFC で補強した SC 柱試験体の圧縮試験結果を図 8(a), (b)および 表 11 に, UFC で補強した試験体の最終破壊形状 写真 7 に示す。

薄肉鋼管で補強した SC 柱試験体の最大耐力は, いずれの試験体も式(4)に示す薄肉鋼管 N_h,内蔵 鉄骨 N_sおよびコンクリート N_cによる単純累加耐 力 N₀に達し,その後若干耐力低下を生じるもの の,徐々に耐力が再上昇し,薄肉鋼管による拘束 効果は顕著である。

$$N_0 = N_s + N_c + N_h \tag{4}$$

一方、UFC で補強した SC 柱試験体の最大耐力は、 単純累加耐力 N_0 の 0.91~0.94 倍を示し、その後 急激な耐力低下を生じた。UFC では、薄肉鋼管に 比べ、変形性能の向上は僅かであった。なお、コ ンクリートを UFC で補強した試験体と同様に, 式(2)を用いて UFC で補強した SC 柱試験体の最 大耐力 N_{max} からコンクリートの負担軸力 N_c を差 し引くことで求めた UFC の圧縮強度 σ_{BUmax} は 167 ~178N/mm²で, UFC 単体の圧縮試験結果, コン クリートを UFC で補強した試験体の圧縮試験結 果より高く,規格値に近い値であった。

5. まとめ

再生コンクリートを用いた縮小試験体による 合成構造柱部材の中心圧縮実験を行い,以下の知 見が得られた。

- ・ 再生コンクリートを用いた SC 柱の圧縮性状 は、普通コンクリートを用いた SC 柱と同等 の性能を示した。
- 耐久性上の問題から、SC柱のコンクリート表面を薄肉鋼管および UFC で被覆することにより、耐荷能力は向上し、更に薄肉鋼管では変形能力の向上も認められた。

以上のことから,本実験で用いた再生コンクリ ートは,合成構造部材として充分適用可能である。

謝辞

本研究に際し、東京建設廃材処理協同組合 葛 西再生コンクリート工場の細野知之氏には再生 コンクリートの手配で御協力をいただきました。 また、混和剤メーカーF社の方々には調合計画に おいて貴重な御助言をいただきました。ここに記 して深謝いたします。

参考文献

- 1)日本工業規格:JIS A 5021(コンクリート用再生 骨材 H), 2005 年 3 月
- 2)日本工業規格: JIS A 5022(再生骨材 M を用いた コンクリート), 2007 年 3 月
- 3)日本工業規格: JIS A 5023(再生骨材 L を用いた コンクリート), 2006 年 3 月
- 4)小松博,藤本利昭,櫻田智之:再生コンクリートの合成構造への適用に関する研究,第2回日本大学生産工学研究所地域連携プロジェクト

研究発表会報告書, 2010.2.26

表 11 外殻材を用いた SC 柱試験体の耐力一覧

(kN)	(kN)	(kN)	(kN)	(kN)	N_{max}/N_0	
587	655	215	1558	1587	1.02	
723		655	515	1694	1727	1.02
390		1277	2322	2172	0.94	
529		1277	2461	2242	0.91	
	(kN) 587 723 390 529	(kN) (kN) 587	$\begin{array}{c cccc} (kN) & (kN) & (kN) \\ \hline 587 \\ \hline 723 \\ \hline 390 \\ \hline 529 \\ \end{array} & 655 \\ \hline 1277 \\ \hline \end{array}$	$\begin{array}{c ccccc} (kN) & (kN) & (kN) & (kN) \\ \hline 587 \\ \hline 723 \\ \overline{390} \\ 529 \end{array} & 655 & \begin{array}{c} 315 & 1558 \\ \hline 1694 \\ \hline 2322 \\ 2461 \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	

写真7 最終破壊形状(試験体:S-R-U)