RC 床版の劣化度診断技術

木田 哲量(日大生産工・教授)阿部 忠(日大生産工・教授) 小川 洋二(太平洋コンサルタント)水口 和彦(日大生産工・助教)

1 まえがき

高度経済成長期に建設され高経年化したコン クリート (RC) 構造物の老朽化が問題視されて おり、これら RC 構造物の劣化診断手法および 補修・補強指針の確立が急務とされている。RC 構造物の一つである道路橋 RC 床版の劣化は、 大型車両の繰り返し走行による疲労劣化が主要 因であるとされているが、最近の報告では、融 雪剤や飛来塩分による塩害,寒冷地での凍害, さらにはアルカリシリカ反応など、いくつかの 因子が複合し,劣化を促進させているとの報告 がなされており ^{1,2,3)}, 劣化メカニズムの解明は 困難なものになっている。したがって、劣化 RC 構造物に対して適切な診断を行うことは、その 後の対応を図る上で非常に重要である。特に, 診断後の延命を図るために補修・補強を施す際 には、劣化メカニズムに応じた対策をすること が肝要であることから、より詳細な調査手法の

本報告は, RC 床版の一般的な劣化度診断技 術を前段で取りまとめ,後段では新たな調査手 法として,小径コア採取による劣化診断の妥当 性および塩分濃度測定における EPMA 測定の有 効性を考察したものである。この劣化診断と EPMA 測定の試験は,架設後 40 年以上が経年し

開発が切望されている。

ている千葉県銚子大橋の道路橋 RC 床版より採 取したコンクリートコアであり、これに各種の 劣化診断を行い、その有用性を検証して、RC 床版部材における劣化診断手法確立の一助とす るものである。

2 一般的な RC 床版の調査手法

2.1 調查一般

RC 床版の疲労による変状としては,床版下面の格子状ひび割れの発生が特徴的であり,これを調査するためには,目視による外観観察が主体である。さらに,詳細に調査する場合の調査手法の一例を表-1 に示す。

2.2 日常点検/定期点検

日常点検では、床版の状態変化を日常的に把 握し、劣化の進行状況を早期に発見する必要が ある。従って、床版下面から、ひび割れや漏水、 遊離石灰の発生状況を観察することが中心とな る。一方、構造体としての性能低下やその兆候 の把握に加え、走行安全性の確認やコンクリー ト片の剥落などの使用性と第三者影響度の評価 を行うことも重要である。

さらに定期点検は、日常点検と同様の調査手 法による点検が主であるが、ひび割れ密度・幅 の計測、ひび割れの開閉やずれなどの挙動の確 認程度などは、より床版に接近して行われる。

調査項目	現象・発生状況	調査方法
外観の変状	ひび割れ状態(方向性、密度、幅、角欠けの有無) 漏水、遊離石灰、コンクリートの色合い	目視、簡単な計測、写真撮影
	不良音	打音
路面の状態	 亀裂、 陥没の 有無	目視、写真撮影
ひび割れの挙動	深さ、開閉量、段差量	コンタクトゲージなど
設計断面諸量	コンクリート強度	テストハンマ、コア試験
	配筋	電磁波計測、超音波法等
	床版厚	超音波法等
耐荷性能	たわみ量	載荷試験
交通特性	交通量、大型車混入率、車線分担率、車種区分、軸重	交通量調查、荷重計測

表-1 床版の調査手法4)

調査項目		調查方法
	たわみ	載荷試験
変位に関するもの	ひび割れの挙動	載荷試験
	ひび割れ深さ	超音波伝播速度計測、コア採取
	コンクリート強度	テストハンマ、コア強度試験
オナキシリア目ナテストの	コンクリートの品質	採取コアによる室内試験
1/1 AT (CIX) 9 0000	コンクリート断面	コア採取など
	配筋の状態	電磁波調査、超音波法、はつり調査
交通特性に関するもの	荷重実態	交通量調査、車両重量の計測など

表-2 床版の詳細調査項¹⁾

2.3 詳細調查

日常点検や定期点検では精度の良い評価およ び判定が難しい場合や,劣化の進行が著しい部 位の調査が必要となる場合は詳細調査が行われ る。詳細調査の項目と方法を表-2に示す。 2.4 塩害床版の調査

日常点検ないし定期点検での床版下面観察に おいて, 錆汁が確認された場合は, 鋼材腐食の 可能性がある。鋼材の腐食は, コンクリートの 中性化や塩害によって生じ, 腐食生成物の体積 膨張がコンクリートにひび割れや剥離を引き起 こしたり, 鋼材の断面減少などを伴うことによ り, 構造物の性能が低下する。塩害の原因とな る塩化物イオンは, 海水の飛来や凍結防止剤の 浸透などにより供給される。塩害の可能性があ る場合の調査手法を述べる。

2.4.1 塩化物イオン濃度測定

コンクリート中の塩化物イオン濃度の測定に 関しては、RC構造物から採取したコアあるいは ドリル粉末を用いて測定されてきた。コアにつ いては、深さ方向にスライスした後に粉砕して 試料としたり、断面スライスする。粉砕試料を 用いた土木学会基準JSCE-G 573「実構造物にお けるコンクリート中の全塩化物イオン分布の測 定方法」等⁵⁾により濃度分布の測定や、コア断 面を用いた土木学会基準 JSCE-G574-2005

「EPMA 法によるコンクリート中の元素の面分 析法(案)」⁵⁾によりイオン濃度の測定がなされる。 ここで,各測定法の特徴を表-3に示す。同表よ り,各測定法を比較する。塩化物イオンの拡散 係数を高精度で推定する場合には,EPMA 法が 有効であり,分解能も他の測定法に比して緻密 で,骨材による影響範囲が広いなどの優れた特 徴を有している。さらに,図-1は EPMA による

表-3 塩化物イオン測定法の特徴

測定法	分解能	骨材の影響	推定精度
スライス法	5~10mm	小	低~高
ドリル法	0.5~1mm	大	中
EPMA法	50~100μm	無~小	南

図-1 EPMA による塩化物イオン濃度測定例 測定例であるが、コンクリート断面の塩化物イ オン濃度の分布状況を連続的に測定することが 可能であり、解析結果がビジュアル化されるた めに判別が容易なものとなっている。

2.4.2 鋼材の腐食調査

鋼材の腐食調査においては、かぶりコンクリ ートをはつり、腐食の有無、位置、面積、重量、 孔食深さなどを測定する。定量的データを得ら れることから、構造物の性能低下を定量的に評 価することができる。

2.4.3 塩害劣化予測

塩害による構造物の性能低下を予測するために は、塩害を原因とする劣化度合を定量的に予測 する必要がある。そのためには、現状の塩化物 イオンの濃度分布に加え、塩化物イオンの拡散 の予測を行い、鋼材腐食の開始時期を判定する 必要がある。

表-4 調査項目

測定項目	超音波伝播速度 (水平方向)	圧縮強度		EPMA	
		静弹性係数	空隙径分布		
		超音波伝播速度			
		(鉛直方向)			
試料サイズ	50mm間隔	φ 25×50mm	20mm間隔	全断面(約230mm)	
コアNo.1	4点		11試料	Cl, Ca, C, Si, S	
コアNo.2	4点	4試料		組成像	

3 銚子大橋 RC 床版の劣化診断

本研究では、劣化診断の新たな調査手法とし て小径コアによる診断評価を行い、その有効性 を検証した。架設後40年以上経年した千葉県銚 子大橋の RC 床版部材における劣化診断につい て、表層から深さ方向の劣化度分布を把握する ことを目的として種々の試験を行った。

3.1 試験方法

試験は, RC 床版より採取したコア (φ 45× 230mm)を用いて行った。コアの外観を写真-1 に示す。コア長は約230mm,上面側(走行面側) 70mm は、鋼繊維コンクリートで増厚されてい た。増厚部と既存コンクリート部との付着力は 弱く、コア採取時の振動で容易に剥離するケー スが多く見られた。この劣化要因としては、構 造物の設置場所における環境条件から,①塩害, ②中性化,および③繰返し輪荷重による疲労か らの内部組織の変化、などが考えられる。本研 究では、これらの影響を含めた RC 床版の劣化 状態を検証するために、①EPMA による塩化物 イオン濃度分布,②EPMA による面分析,③超 音波伝播速度, 圧縮強度·静弹性係数, 空隙径 分布,より評価を行うこととする。ここで,表 -4 に試験項目を, 図-2, 図-3 に試験の手順をそ れぞれ示す。

(1)EPMA による分析方法

塩化物イオンの分析には、電子プローブマイ クロアナライザ(Electron Probe Micro Analyzer) を用いた。コア試験体を縦半分に切断し、樹脂 により補強した後、切断面を研磨し観察面とし た。観察面に導電性を持たせるために炭素を蒸 着したものを測定用試料とし、カルシウム(Ca)、

写真-1 コア外観

図-3 コア No.2の試験フロー

塩素 (Cl), 炭素 (C), ケイ素 (Si), および硫 黄 (S) を, 以下に示す測定条件でピクセルごと に定量した。

加速電圧:15kV, 試料電流:1×10⁻⁷A, 測定時間:40msec/ピクセル, 分光結晶:PET (Ca, Cl, S), TAP (Si), LDE5H (C) 標準試料:Ca, Si:Wollastonite (CaO=48.0mass%, SiO₂=50.9mass%),

図-4 コア No.2の結果

S: Anhydrite (SO₃=58.8mass%), Cl: Halite (Cl=60.7mass%), C: Calcite (CO₂=44.0mass%), ステージスキャン法

プローブ径:50µm

ピクセルサイズ:100μm×100μm

3.2 試験結果

(1) 超音波伝播速度と圧縮強度

図-4 にコア No.2 の表層から深さ方向への超 音波伝播速度と、小径(φ25×50mm) コアの圧 縮強度・静弾性係数の結果を合わせて示す。圧 縮強度は、小径コア n=1 のデータであるが、表 層~100mm では 32N/mm², 100~200mm では 44 ~48N/mm²であった。増厚部(0~約 70mm)よ り既存部の方が残存圧縮強度は大きく、設計基 準強度(21-24N/mm²程度)を十分保持する結果 を示した。また、超音波伝播速度と圧縮強度と の関係は、概ね比例関係の傾向が認められた。

(2) 細孔径分布

図-5 にコア No.1 の表層から深さ方向の細孔 径分布を示す。同図より,特徴的なことは, 0-60mmの増厚部は,80-220mmの既存部と比較 して,0.003~0.008µmの空隙(ゲル空隙)が少 なく,0.1~30µmの空隙が多いことである。異 なるコンクリートの細孔組織構造に顕著に差異 が生じることを示している。60-80mmはちょう ど両者の中間値を示していた。また,圧縮強度 と相関が高いとされる0.05~2µmの毛細管空隙 量は,増厚では表層側ほど,既存部では下縁側 ほど占有率が高くなっている。これは,増厚部 は経年劣化が低いことと,繰り返し輪荷重によ

図-5 細孔径分布測定結果

る既存部の強度の低下が著しかったことと思われる。

(3) 塩分含有状況

図-6 にコア No.1, 図-7 にコア No.2 の EPMA による面分析結果を示す。

図-6より、コア No.1 においては、CI はコア 上面側表面から深さ 30mm 付近および増厚コン クリートと既存コンクリートとの界面付近に相 当する深さ 70mm から 220mm 付近(最下端か ら10mm付近)まで浸入が認められる。上面側 表面部の Cl 濃度が最も高い。下面側表面部 10mm 程度の領域には CI は見られない。また, 上面側表面から深さ 1~2mm の領域では, Cl 濃 度および SO3 濃度がともに低く、炭酸化領域と 思われる。炭酸化領域では、ペースト部の CaO 濃度および SiO₂ 濃度もやや低くなっている。ま た, SO₃は炭酸化領域と非炭酸化領域の境界付 近で濃縮が見られる。下面側表面から深さ10m mの領域では、Cl 濃度および SO3 濃度がともに 低く,炭酸化領域と思われる。炭酸化領域では, ペースト部の CaO 濃度および SiO,濃度もやや 低くなっており、SO3 は炭酸化領域と非炭酸化 領域の境界付近で濃縮が見られる。

図-7より、コア No.2 においては、Cl はほぼ コンクリート全面への浸入が認められる。上面 側表面から 20mm 付近に特に濃度が高い領域 があった。データのばらつきが大きいが、No.1 と同様に増厚コンクリートと既設コンクリート との界面付近から Cl 濃度が高くなり、下面側に 向かって緩やかに濃度が増加している。下面側 表面から 15mmの深さには Cl がほとんど見られ

図-6 EPMA による面分析結果 (コア No. 1)

図-7 EPMA による面分析結果 (コア No. 2)

ない領域がある。また、上面側表面から深さ 3~5 mmの領域では、Cl 濃度および SO3 濃度がとも に低く、炭酸化領域と思われる。炭酸化領域で は、ペースト部の CaO 濃度および SiO2 濃度も やや低くなっている。また、SO3 は炭酸化領域 と非炭酸化領域の境界付近で濃縮が見られる。 下面側表面から 5~15mm の領域では, Cl 濃度 は低く, ペースト部の CaO 濃度および SiO2 濃 度もやや低くなっている。SO3 は明瞭ではない ものの濃縮が見られており, 炭酸化領域と思わ れる。

(4) コンクリート中の塩化物イオン量の推定

EPMA により得た骨材込み(コンクリート)の深さ方向の平均塩化物イオン濃度(mass%)を用いて、コンクリート単位容積あたりの塩化物イオン濃度(kg/m³)を式(1)より算出し、その算出結果を図-8、9 に示す。なお、コンクリートの乾燥単位容積質量は 2200kg/m³ とした⁶⁾。 また、図中の赤線(深さ0の軸と平行な太線)は、塩化物イオン濃度 1.2kg/m³を示すものであり、一般的にコンクリート中の鉄筋が腐食を開始する限界濃度⁷⁾とされている。

図-8,9より,コア No.1 では既存コンクリートの下面側およそ 60mm の領域で鉄筋腐食が開始している可能性が高い。また,コア No.2 では,既存コンクリートの下面側では 1.2kg/m³を超過する領域が少なく,鉄筋腐食の可能性は顕著に現れてはいないが,中央部で 1.2kg/m³を超える領域が所々に見られるため,局所的な鉄筋腐食が生じている可能性がある。

4.まとめ

本研究では、小径コアを用いた新調査法を実 橋 RC 床版における床版厚さ方向、すなわち床 版深さ方向の劣化状況を把握するために各種調 査を実施した。その結果、次の事項が明らかに なった。

- (1)深さ方向の圧縮強度の分布は、小径コアを用 いることにより 5cm ごとに診断することが可 能である。また、超音波伝播速度と圧縮強度 との関係には相関が見られることから、さら に細かい圧縮強度分布を測定できる可能性が 示唆された。
- (2)細孔径分布からは、毛細管空隙量が RC 床版 下縁部で多く見られており、繰返し輪荷重の 影響と示唆された。
- (3)塩化物イオン濃度分布においては, EPMA は 連続的に測定することが可能であり,鋼材腐 食限界値を超えている領域の判別が容易に推 測できるとともに,中性化の進行状況の観察 も可能である。

【参考文献】

- 新銀武:積雪寒冷地の塩化物供給を考慮した 床版寿命診断に関する研究,鋼構造年次論文 報告集,第13巻,pp.347-354,2005
- 2)藤田弘昭,津村浩三,山本昇:青森県日本海 沿岸の RC 橋梁において塩分浸透がひび割れ と鉄筋腐食に及ぼす影響についての調査,構 造工学論文集, Vol.53A, pp.666-673, 2007
- 3) 竹田俊明ほか:寒冷地における橋梁の劣化環 境と RC 床版の劣化予測に関する研究,構造 工学論文集, Vol.53A, pp.674-685, 2007
- 4)土木学会:コンクリート標準示方書[維持管理 編],2007
- 5)土木学会:コンクリート標準示方書[規準編], 土木学会規準および関連規準,2007
- 6)橋梁塩害対策検討委員会:害橋梁維持管理マニュアル(案),2008
- 7)日本コンクリート工学協会:コンクリート診 断技術, 2009